A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

APLICAÇÕES DA INFORMÁTICA NA PESQUISA APLICAÇÕES NA PESQUISA Levantamento bibliográfico Coleta de dados Banco de dados Análise dos dados.

Apresentações semelhantes


Apresentação em tema: "APLICAÇÕES DA INFORMÁTICA NA PESQUISA APLICAÇÕES NA PESQUISA Levantamento bibliográfico Coleta de dados Banco de dados Análise dos dados."— Transcrição da apresentação:

1

2 APLICAÇÕES DA INFORMÁTICA NA PESQUISA

3 APLICAÇÕES NA PESQUISA Levantamento bibliográfico Coleta de dados Banco de dados Análise dos dados

4 ALGUNS TEMAS DE PESQUISA Sistemas de Apoio a Decisão Inteligência artificial

5 Sistemas de Apoio a Decisão São programas computacionais projetados para ajudar os profissionais de saúde a tomarem decisões clínicas. Eles procuram representar o conhecimento de modo a se aproximar do processo de pensamento humano.

6 Inteligência artificial Aplicação da ciência computacional para problemas de alto nível do mundo real (Shortliffe et al., 1990). Alguns modelos matemáticos: Teorema de Bayes Redes Neuronais (ou neurais) Lógica Fuzzy

7 Teorema de Bayes É um método quantitativo para calcular a probabilidade condicional de se ter uma determinada doença dado que o paciente tem um conjunto de sinais e sintomas.

8 O teorema de Bayes é usado na inferência estatística para atualizar estimativas da probabilidade de que diferentes hipóteses sejam verdadeiras, baseado nas observações e no conhecimento de como essas observações se relacionam com as hipóteses. Este teorema é uma das pedras angulares da estatística das probabilidades combinadas, e é largamente utilizada em áreas a primeira vista pouco relacionadas, como Medicina e Informática.

9 Na primeira, o paradigma embasado em evidências é todo construído em cima do teorema de Bayes. Baseado na experiência acumulada de exames e testes para tentar diagnosticar uma doença, o médico enquadra seus pacientes e pode estimar qual a probabilidade de que uma dada doença esteja se manifestando.

10 Ou seja, dada uma probabilidade inicial (por exemplo, o paciente é fumante) e aplicado um exame em que, se sabe, há uma probabilidade de falsos-positivos e falso-negativos (por exemplo, uma biópsia de pulmão), o médico sabe qual a probabilidade resultante daquele paciente ter a doença (por exemplo, câncer de pulmão).

11 Na informática, muitos dos sistemas de classificação automática são baseados no teorema de Bayes. Inicialmente o sistema é treinado, aceitando entradas de humanos que dizem que uma dada entrada pertencem a determinado grupo. Com o tempo, o sistema acumula um grande banco dessas informações e, aplicando o teorema de Bayes, consegue estimar a probabilidade de cada novo dado de pertencer a cada grupo já classificado. (Pablo Lorenzzoni)

12 Redes Neuronais É um paradigma de processamento de informações que foi inspirado na forma com que o sistema nervoso trabalha, tal como o cérebro processa a informação. As redes neuronais aprendem através de exemplos.

13 Redes Neuronais As características que tornam a metodologia de redes neuronais interessante do ponto de vista da solução de problemas são as seguintes (Guilherme Bittencourt Capacidade de ``aprender'' através de exemplos e de generalizar este aprendizado de maneira a reconhecer instâncias similares que nunca haviam sido apresentadas como exemplo. Bom desempenho em tarefas mal definidas, onde falta o conhecimento explícito sobre como encontrar uma solução.

14 Redes Neuronais Não requer conhecimento a respeito de eventuais modelos matemáticos dos domínios de aplicação. Elevada imunidade ao ruído, isto é, o desempenho de uma rede neuronal não entra em colapso em presença de informações falsas ou ausentes, como é o caso nos programas convencionais, mas piora de maneira gradativa. Possibilidade de simulação de raciocínio a priori'' e impreciso, através da associação com a lógica nebulosa.

15 Redes Neuronais Alguns domínios onde são comuns aplicações da técnica de redes neuronais são: reconhecimento de padrões em geral (por exemplo, visão computacional, reconhecimento de voz, etc.), processamento de sinais, previsão desde variação de carga elétrica até cotações da bolsa de valores, diagnóstico de falhas e identificação e controle de processos.

16 Lógica Fuzzy Foi desenvolvida por Lofti A. Zadeh da Universidade da Califórnia em Berkeley na década de 60 e combina lógica multivalorada, teoria probabilística, inteligência artificial e redes neurais para que possa representar o pensamento humano, ou seja, ligar a linguística e a inteligência humana, pois muitos conceitos são melhores definidos por palavras do que pela matemática.Lofti A. Zadehredes neurais (http://www.din.uem.br/ia/controle/fuz_prin.htm)

17 Lógica Fuzzy Baseia-se no conceito de valores parcialmente verdadeiros, variando de completamente verdadeiro a completamente falso e tem se tornado um instrumento poderoso para lidar com a imprecisão e a incerteza.

18 Lógica Fuzzy Aristóteles, filósofo grego ( a.C.), foi o fundador da ciência da lógica, e estabeleceu um conjunto de regras rígidas para que conclusões pudessem ser aceitas logicamente válidas - raciocínio lógico baseado em premissas e conclusões.

19 Lógica Fuzzy Todo ser vivo é mortal" (premissa 1) "Sarah é um ser vivo" (premissa 2) Conclusão: "Sarah é mortal". A lógica Ocidental, assim chamada, tem sido binária, isto é, uma declaração é falsa ou verdadeira, não podendo ser ao mesmo tempo parcialmente verdadeira e parcialmente falsa. Esta suposição e a lei da não contradição, que coloca que "U e não U" cobrem todas as possibilidades, formam a base do pensamento lógico Ocidental.

20 Lógica Fuzzy Entre a certeza de ser e a certeza de não ser, existem infinitos graus de incerteza. Esta imperfeição intrínseca à informação representada numa linguagem natural, tem sido tratada matematicamente no passado com o uso da teoria das probabilidades.

21 Lógica Fuzzy Contudo, a Lógica Difusa, com base na teoria dos Conjuntos Nebulosos (Fuzzy Set), tem se mostrado mais adequada para tratar imperfeições da informação do que a teoria das probabilidades. De forma mais objetiva e preliminar, podemos definir Lógica Difusa como sendo uma ferramenta capaz de capturar informações vagas, em geral descritas em uma linguagem natural e convertê-las para um formato numérico, de fácil manipulação pelos computadores de hoje em dia.Conjuntos Nebulosos (Fuzzy Set)

22 Lógica Fuzzy Se o tempo de um investimento é longo e o sistema financeiro tem sido não muito estável, então a taxa de risco do investimento é muito alta. Os termos "longo", "não muito estável" e "muito alta" trazem consigo informações vagas. A extração (representação) destas informações vagas se dá através do uso de conjuntos nebulosos.

23 Lógica Fuzzy Devido a esta propriedade e a capacidade de realizar inferências, a Lógica Difusa tem encontrado grandes aplicações nas seguintes áreas: Sistemas Especialistas; Computação com Palavras; Raciocínio Aproximado; Linguagem Natural; Controle de Processos; Robótica; Modelamento de Sistemas Parcialmente Abertos; Reconhecimento de Padrões; Processos de Tomada de Decisão (decision making ).Sistemas Especialistas; Linguagem Natural Robótica;


Carregar ppt "APLICAÇÕES DA INFORMÁTICA NA PESQUISA APLICAÇÕES NA PESQUISA Levantamento bibliográfico Coleta de dados Banco de dados Análise dos dados."

Apresentações semelhantes


Anúncios Google