A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Inferência Geográfica: Álgebra de Mapas. 2 Os Tipos de Inferência Geográfica Produto só depende de um dado de entrada – Declividade (depende apenas da.

Apresentações semelhantes


Apresentação em tema: "Inferência Geográfica: Álgebra de Mapas. 2 Os Tipos de Inferência Geográfica Produto só depende de um dado de entrada – Declividade (depende apenas da."— Transcrição da apresentação:

1 Inferência Geográfica: Álgebra de Mapas

2 2 Os Tipos de Inferência Geográfica Produto só depende de um dado de entrada – Declividade (depende apenas da altimetria) – Teor de argila (depende apenas dos perfis de solo) Transformação da altimetria em declividade – Procedimento determinístico Transformação dos perfis em teor de argila – Distribuição (superfície, campo) contínua a partir de amostras – Procedimento geoestatístico Modelo inferencial univariado – Determinístico – Estatístico

3 3 Os Tipos de Inferência Geográfica Produto depende de vários dados de entrada – Ex. depósito de lixo Regras de combinação dos dados de entrada – Regras são lógicas (E,OU,NÃO) ou matemáticas (SOMA, MEDIA) – Álgebra de Mapas (operadores) – Linguagem que expressa tais regras (SQL, LEGAL) – Procedimento determínistico multivariado Procedimento estatístico – Estimativa de valores (e.g., IQD, TIN, Krigagem)

4 4 OPERAÇÕES SOBRE GEO- CAMPOS Campos – Superfícies contínuas – Ex. Imagens, Altimetria, Vegetação – Geralmente associadas a dados do meio físico Tais operações podem ser classificadas como: – Pontuais, – Vizinhança, – Zonais.

5 5 Operações sobre Geo-campos OPERAÇÕES PONTUAIS Referem-se a um ponto (independente da vizinhança) – Unárias ou de Transformação: entrada é um único geo-campo, equivale a um mapeamento entre os geo-campos de entrada e saída. – Booleanas: são utilizadas em análise espacial qualitativa e geram um TEMÁTICO a partir de regras aplicadas a geo-campos. – Matemáticas: funções aritméticas, logarítmicas e trigono-métricas, aplicadas aos modelos Numérico, Temático e Imagem.

6 6 OPERAÇÕES SOBRE GEO- CAMPOS OPERAÇÕES PONTUAIS ENTRADA SAÍDA NOME DA OPERAÇÃO ENTRADA SAÍDA NOME DA OPERAÇÃO TEMÁTICO MNT PONDERAÇÃO TEMÁTICO MNT PONDERAÇÃO TEMÁTICO TEMÁTICO RECLASSIFICAÇÃO TEMÁTICO TEMÁTICO RECLASSIFICAÇÃO IMAGEM TEMÁTICO FATIAMENTO IMAGEM TEMÁTICO FATIAMENTO MNT TEMÁTICO FATIAMENTO DE CLASSES MNT TEMÁTICO FATIAMENTO DE CLASSES

7 7 Ponderação Le Ls Li Aq TemáticoNumérico V 1 ={Le, Li, Ls, Aq} V 2 ={0.0, 1.0} Pesos Pesos Le = 0.60 Li = 0.20 Ls = 0.35 Aq = 0.10

8 8 Fatiamento Numérico Temático Baixa Média Alta Classes de declividade :- Baixa: % Média: % Média: % Alta: > 20% Alta: > 20%

9 9 Operações sobre Geo-campos OPERAÇÕES PONTUAIS / BOOLEANA (Lógicas) – Utilizam operadores lógicos (booleanos) como AND, NOT, OR e XOR. – P1 AND P2 -> intersecção de P1 e P2. – P1 NOT P2 -> retorna somente os elementos contidos exclusivamente em P1. – P1 OR P2 -> união de P1 e P2. – P1 XOR P2 -> retorna todos elementos contidos em P1 e P2 não incluídos na intersecção.

10 10 Conversão entre DEM Entrada – Grade com valores reais da grandeza mensurada Declividade em %, Teor mineral em ppm, distância em km Saída – Grade com valores entre [0,1] representando a influência potencial da entrada em relação a saída Pergunta – Quando a entrada varia, como varia a saída? – Preciso de um modelo inferencial Experimental Literatura Empírico (forma: linear, logística, quadrático)

11 11 Lógica Contínua Fuzzy Logic é uma extensão da lógica Booleana, que tem sido estendida para manipular o conceito de verdade parcial, isto é, valores compreendidos entre completamente verdadeiro e completamente falso. 0 1 Falso Verdade 0 1 Falso Verdade Lógica Boleana Fuzzy Logic z z V F F V F(z) F(z)

12 12 Lógica Contínua Um conjunto Fuzzy (S) é definido matematicamente como: Z : S = (z, f(z)) onde: Z é referido como o universo de discurso para o subconjunto Fuzzy S S é o conjunto Fuzzy em Z, expresso pelos pares ordenados [z, f(z)]. z Z, é um elemento do conjunto Z (primeiro elemento do par ordenado). f(z) é uma função que mapeia z em S, variando de 0 a 1 (segundo elemento do par ordenado). Estabelece o grau de verdade: O valor Zero (0) é usado para representar a condição de Falsidade, O valor Um (1) é usado para representar a condição de Verdade, Valores intermediários são utilizados para representar o grau de verdade.

13 13 Escolhendo os fatores de ponderação Teoria de suporte à decisão Um dos aspectos mais importantes do uso dos SIGs é em produzir novas informações a partir de um banco de dados geográficos. Tal capacidade é fundamental para aplicações como: – Ordenamento territorial, – Estudos de impacto ambiental, – Estudos sócios-econômicos, etc.

14 14 Suporte à Decisão - Conceitos Básicos O conceito fundamental dos vários modelos de tomada de decisão é o de racionalidade, afim de satisfazer um nível pré-estabelecido de aspirações. Um modelo racional de tomada de decisão preconiza quatro passos: – Definição do problema: formular o problema como uma necessidade de chegar a um novo estado. – Busca de alternativas: estabelecer as diferentes alternativas (aqui consi- deradas como as diferentes possíveis soluções do problema) e deter minar um critério de avaliação. – Avaliação de alternativas: cada alternativa de resposta é avaliada. – Seleção de alternativas: as possíveis soluções são ordenadas, selecio-nando-se a mais desejável ou agrupando-se as melhores para uma avaliação posterior.

15 15 A Técnica AHP - Processo Analítico Hierárquico Quando temos diferentes fatores que contribuem para a nossa decisão, como fazer para determinar a contribuição relativa de cada um ? Para abordar este problema, Thomas Saaty propôs, em 1978, uma técnica de escolha baseada na lógica da comparação pareada, denominada Técnica AHP. Neste procedimento, os diferentes fatores que influenciam a tomada de decisão são comparados dois-a-dois, e um critério de importância relativa é atribuído ao relacionamento entre estes fatores, conforme uma escala pré-definida.

16 16 Processo AHP Passo 1: – Comparar os critérios dois-a-dois Passo 2: – Verificar a consistência dos dados – Compara a matriz de pesos com uma matriz aleatória – Consistente se a probabilidade da matriz ser aleatória é menor que 10% Passo 3: – Produzir os pesos (soma = 1.0) – Fazer uma inferência por média ponderada

17 17 Consideramos uma das situações mais comuns em SIG: classificar o espaço em áreas mais ou menos adequadas para uma finalidade. Este problema ocorre em grande número de aplicações, como zoneamento, prospecção mineral, seleção de áreas para um novo empreendimento comercial, etc. Exemplo, um estudo de preservação ambiental em áreas de encosta, para estabelecer uma política de ocupação, associada a mapas de risco de desmoronamento e impacto ambiental. Vamos supor que dispomos de um mapa topográfico, da carta geotécnica, e de um mapa de uso e ocupação do solo (obtido a partir de foto-interpretação ou classificação digital de imagens de satélite). A Técnica AHP - Processo Analítico Hierárquico

18 18 O procedimento tradicional de análise baseia-se no princípio de inter-seção de conjuntos espaciais de mesma ordem de grandeza (Yves Lacoste) e está baseada em condicionantes (risco máximo ocorre em áreas cuja declividade é maior que 10%, não são áreas de preservação ambiental, e o tipo de terreno é inadequado). A transposição desta metodologia analógica para o ambiente de SIG requer o uso de operações booleanas (OU, E, NÃO) para expressar as diferentes condições. Esta técnica utiliza o computador como mera ferramenta automatizada de desenho, ignorando todo o potencial de processamento numérico do SIG, e gera descontinuidades inexistentes no dado original. Por exemplo, áreas com declividade igual a 9,9% serão classificadas diferentemente de regiões com inclinação de 10,1%, não importando as demais condições. A Técnica AHP - Processo Analítico Hierárquico

19 19 Mapas são dados e não desenhos. Tratar mapas como dados significa dar forma numérica ao espaço ao associar, a cada localização, um valor que representa a grandeza em estudo; A Técnica AHP - Processo Analítico Hierárquico


Carregar ppt "Inferência Geográfica: Álgebra de Mapas. 2 Os Tipos de Inferência Geográfica Produto só depende de um dado de entrada – Declividade (depende apenas da."

Apresentações semelhantes


Anúncios Google