SÚPLICA INCIAL PROVÁVEIS SÍTIOS DE AÇÃO u SÍTIO MACROSCÓPICO SNC ENCÉFALO x MEDULA u SÍTIO MICROSCÓPICO SINAPSES INIBITÓRIA x EXCITATÓRIA PRÉ.

Slides:



Advertisements
Apresentações semelhantes
Fisiologia do Sistema Respiratório
Advertisements

Monitorização da mecânica respiratória
ASSISTÊNCIA DE ENFERMAGEM NO ATENDIMENTO A NECESSIDADE DE OXIGENAÇÃO
Sistema Respiratório Professora Helena.
Sistema Cardiovascular
O SISTEMA NERVOSO Centro de controle.
Epilepticus sic curabitur
Monitorização Respiratória durante a Ventilação Mecânica
Fisiologia Respiratória
Assistência Ventilatória Mecânica -
O ciclo cardíaco.
IV- CLASSIFICAÇÃO PARA ANESTESIA (ESTADO FÍSICO)
FISIOLOGIA DO SISTEMA RESPIRATÓRIO
Respiração Apostila 2 Página 26.
FISIOLOGIA HUMANA Eduardo Silva..
Resposta Ventilatória ao Exercício
Respiração durante o exercício
SISTEMA RESPIRATÓRIO FUNÇÃO – assegurar as trocas gasosas (oxigénio e dióxido de carbono) entre o organismo e o ar da atmosfera.
Cap. 5 – 8º Ano Professor: Samuel Bitu
FISIOLOGIA VEGETAL – Condução e Transpiração
Ventiladores Pediátricos para Anestesia
Mecanismo de Ação Agem inibindo a condução dos nervos periféricos por um decréscimo na permeabilidade ao sódio, impedindo a despolarização da membrana;
Farmacodinâmica Prof: Ueliton S. Santos.
Sistema Cardiovascular
SISTEMA RESPIRATÓRIO E EXERCÍCIO
Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP)
Ventilação Natural (VN)
FISIOLOGIA RESPIRATÓRIA Fisioterapia – FMRPUSP
Bruno Victor da Costa – 4º Período – UNIPAC-JF
Sistema Respiratório Rosana Moraes.
Sistema cardiocirculatório
Fisiologia Cardiorrespiratória em Pediatria
Anestésicos Inalatórios
SISTEMA RESPIRATÓRIO E EXERCÍCIO
HUCFF MONITORIZAÇÃO Leonel dos Santos Pereira.
Anestésicos Inalatórios
Anestésicos Inalatórios
FISIOLOGIA CARDIOVASCULAR
INTERVENÇÕES DE ENFERMAGEM NO RECÉM-NASCIDO EM OXIGENOTERAPIA
ANESTESIA INALATÓRIA.
ANESTESIA GERAL INALATÓRIA.
Hemoglobina e a tríade de gases: NO, O2, CO2
VENTILAÇÃO VOLUME-CONTROLADA (VCV)
Módulo III - Métodos de Preservação da Carne
Dinâmica respiratória no exercício
AGENTES ANESTÉSICOS INALATÓRIOS.
ANESTESIA GERAL ANESTESIOLOGIA - UFPE.
Enfermagem Hospitalar: Treinamento em Serviço
VENTILAÇÃO MECÂNICA.
A evolução da respiração no reino animal
Tecido Nervoso Origem: ectoderma Função: condução de estímulos
Fisiologia do sistema respiratório
                                                                                                                                                                                       
OXIGENOTERAPIA Prof. Adrean.
FISIOLOGIA CARDIORRESPIRATÓRIA Regulação da respiração
FISIOLOGIA HUMANA.
Anatomia e Fisiologia Cardiovascular
FISIOLOGIA COMPARATIVA DA RESPIRAÇÃO
SISTEMA RESPIRATÓRIO Profa. Debora S. Marini
VENTILAÇÃO MECÂNICA INVASIVA EM PEDIATRIA
16 outubro 1846.
ANESTÉSICOS INALATÓRIOS
Prof. Oscar Kenji Nihei Disciplina de Fisiologia Humana e Biofísica
SISTEMAS PARA ADMINISTRAÇÃO DE ANESTÉSICOS INALADOS
Sistema Respiratório.
FISIOLOGIA CARDIOVASCULAR
SISTEMA CARDIOVASCULAR u Homeostase da perfusão v Reatividade vascular v Função cardíaca v Reflexos - detecção e ajustes u Interferência dose-dependente.
RELAÇÃO ENTRE ANESTÉSICO INALATÓRIO INSPIRADO E ALVEOLAR u É a fase + importante u Vantagem dos sistemas de alto fluxo u A pressão parcial alveolar controla.
Fisiologia Respiratória Depto. de Anestesiologia – FMB - UNESP.
Transcrição da apresentação:

SÚPLICA INCIAL

PROVÁVEIS SÍTIOS DE AÇÃO u SÍTIO MACROSCÓPICO SNC ENCÉFALO x MEDULA u SÍTIO MICROSCÓPICO SINAPSES INIBITÓRIA x EXCITATÓRIA PRÉ x PÓS-SINÁPTICA u MOLECULAR MEMBRANA LIPÍDIOS x PROTEÍNA

Nível Anatômico Macroscópico  Microscópico  Molecular  Nível Anatômico Macroscópico  Microscópico  Molecular  Local de Ação SNC  Cérebro x Medula  Axônio x Sinapse  Excitatório X Sinapse inibitória  Pré-sináptico X Pós-sináptico  Membrana  Lipídio x Proteína Local de Ação SNC  Cérebro x Medula  Axônio x Sinapse  Excitatório X Sinapse inibitória  Pré-sináptico X Pós-sináptico  Membrana  Lipídio x Proteína Comentários Anestésico interrompe a transmissão no SNC: descerebração não altera a CAM Altas concentrações de anestésicos inalados são requeridas para interromper a sinapse axonal Anestésicos podem bloquear a transmissão excitatória ou favorecer a inibitória Anestésicos podem alterar a liberação de neurotransmissor pré- sináptico e modificar o fluxo de íons através dos canais pós- sinápticos A regra de Meyer-Overton implica num sitio hidrofóbico de ação A hipótese do volume crítico propõe uma ação anestésica através da expansão da membrana A teoria da fluidificação lipídica não pode explicar a produção da anestesia. Evidência de ação nas proteínas de membrana Comentários Anestésico interrompe a transmissão no SNC: descerebração não altera a CAM Altas concentrações de anestésicos inalados são requeridas para interromper a sinapse axonal Anestésicos podem bloquear a transmissão excitatória ou favorecer a inibitória Anestésicos podem alterar a liberação de neurotransmissor pré- sináptico e modificar o fluxo de íons através dos canais pós- sinápticos A regra de Meyer-Overton implica num sitio hidrofóbico de ação A hipótese do volume crítico propõe uma ação anestésica através da expansão da membrana A teoria da fluidificação lipídica não pode explicar a produção da anestesia. Evidência de ação nas proteínas de membrana Possíveis locais de ação anestésica

MECANISMO DE AÇÃO u DIVERSIDADE ESTRUTURAL, SUGERE.....  Ação em mais de um sítio receptor ???? u POTÊNCIA ANESTÉSICA E PROPRIEDADES FÍSICO- QUÍMICAS (LIPOSSOLUBILIDADE), SUGEREM.....  Mecanismo de ação comum (único)

POTÊNCIA ANESTÉSICA POTÊNCIA ANESTÉSICA u MELHOR ESTIMATIVA DE POTÊNCIA ANESTÉSICA : CAM = DE 50 Concentração Alveolar Mínima em 1 atm, de um agente que produz imobilidade em 50% de indivíduos expostos a um estímulo lesivo *CAM: Concentração Alveolar Mínima em 1 atm, de um agente que produz imobilidade em 50% de indivíduos expostos a um estímulo lesivo

Concentração Alveolar Mínima (CAM)

REGRA DE MEYER-OVERTON: “A propriedade física que melhor se correlaciona com a potência anestésica é a lipossolubilidade” NATUREZA FÍSICO-QUÍMICA (DA AÇÃO ANESTÉSICA)

Coeficiente de Partição Sangue/Gás

Coeficiente de Solubilidade Sangue/Gás (Partição)(Partição)

Membrana neuronal deve ser o SÍTIO DE AÇÃO... “ Os AI poderiam agir no interior não polar da bicamada de lipídios, nas bolsas hidrofóbicas, nas proteínas embebidas ou não, na bicamada lipídica” NATUREZA FÍSICO-QUÍMICA (DA AÇÃO ANESTÉSICA)

MEMBRANA COMO SÍTIO DE AÇÃO

NATUREZA FÍSICO-QUÍMICA Membrana neuronal deve ser o SÍTIO DE AÇÃO... A interação dos AI com os lipídios da membrana é um processo dinâmico Verificam-se alterações na dimensão e no estado físico desta (Teoria da fluidificação) (DA AÇÃO ANESTÉSICA)

MEMBRANA COMO SÍTIO DE AÇÃO

NATUREZA FÍSICO-QUÍMICA Membrana neuronal deve ser o SÍTIO DE AÇÃO Estudos recentes tem sugerido que os sítios onde os AI exercem sua ação, são as proteínas G Estas proteínas são vinculadas ao nucleotídeo guanina e unem receptores de neurotransmissores aos canais iônicos no cérebro. (DA AÇÃO ANESTÉSICA)

MECANISMO DE AÇÃO - SNC EM SUMA:  “Os AI interrompem a transmissão neuronal em muitas áreas do SNC”  “Podem ou transmissão excitatória ou inibitória”  “Efeitos tanto pré com pós-sinápticos”.  “A ação final está nas membranas neuronais”

MECANISMO DE AÇÃO - SNC EM SUMA:  “Permanece a possibilidade de uma ação indireta”  “O sítio de ação deve ser anfipático”  “Os AI ligam-se e perturbam os lipídios e as proteínas da membrana neuronal”

RELAÇÃO ENTRE ANESTÉSICO INALATÓRIO INSPIRADO E ALVEOLAR u É a fase + importante u Vantagem dos sistemas de alto fluxo u A pressão parcial alveolar controla a do anestésico em todos os tecidos corporais

EFEITO DA VENTILAÇÃO u Fração alveolar e Fração inspirada u Dois fatores determinam a velocidade de FA FI v Concentração inspirada v Ventilação alveolar u Efeito potente

EFEITO DA VENTILAÇÃO u A ventilação eleva rapidamente concentração alveolar u FA/FI aproxima-se de 1 u Pré-oxigenação para desnitrogenar u 95 % ou + em 2 min, usando sistemas de altos fluxos

EFEITO DA VENTILAÇÃO

u Anestésicos Inalatórios v Solubilidade + alta que N 2 v Elevado Coeficiente de partição sangue/gás v Efeito oposto a ventilação v Ocorre captação dos AI

Alterações na Ventilação

Administrador de Éter “Per Rectum”

SOLUBILIDADE - SOLUBILIDADE -  Coeficiente de partição sangue/gás “Descreve a afinidade relativa do AI nas duas fases, isto é, como o AI irá se repartir entre as duas fases quando o equilíbrio for alcançado”

SOLUBILIDADE - SOLUBILIDADE -  Enflurano tem = 1,9 “ Significa que cada ml de sangue pode receber 1,9 vezes mais moléculas de enflurano do que 1 ml de gás alveolar ”

SOLUBILIDADE - SOLUBILIDADE -  Se  é elevado FA/FI é reduzido u Éter e Metoxiflurano demora u Isoflurano, Enflurano e Halotano teriam indução demorada u Compensamos a captação dos AI pela oferta de concentrações elevadas v 3 a 4 % para produzir 1 % de concentração alveolar

Coeficiente de Partição Sangue/Gás

DÉBITO CARDÍACO - Q u Efeito óbvio????? u Sangue remove AI e reduz FA u Pode parecer conflitante u Aumentando Q, aumentaria o volume de sangue exposto ao anestésico  Análogo ao que acontece com  Análogo ao que acontece com

Alterações no Débito Cardíaco

Anormalidades da Ventilação/Perfusão

EFEITO DO 2º GÁS

EFEITO DA CONCENTRAÇÃO u O efeito do 2º gás é aplicado a um gás administrado junto com o N 2 O u A perda de volume associada a captação de N 2 O concentra o 2º gás u A reposição deste gás irá elevar a quantidade do 2º gás no pulmão

EFEITO DO N 2 O EM ESPAÇOS FECHADOS u Volumes apreciáveis de N 2 O movem-se em espaços gasosos fechados u Pode ter conseqüências funcionais u Espaços complacentes: v Intestino v Pneumotórax v Pneumoperitônio

EFEITO DO N 2 O EM ESPAÇOS FECHADOS  Estes espaços contém N 2 (  = 0,015)  A entrada de N 2 O ( = 0,47) resulta em aumento de volume u Concentrações de : 50 % deve duplicar o volume 70 % deve quadruplicar

EFEITO DO N 2 O EM ESPAÇOS FECHADOS u Na presença de pneumotórax, 75% de N 2 O pode dobrá-lo em 10 min e triplicá- lo em 30 min u Ar no leito sangüíneo expansão rápida, que pode completar-se em minutos ou segundos u Reduz volume letal

PNEUMOTÓRAX

EFEITO DO N 2 O EM ESPAÇOS FECHADOS u Procedimentos de risco para embolização aérea v Fossa posterior v Laparoscopia u Balonetes são susceptíveis à expansão indesejada v Sonda traqueal v Cateter da artéria pulmonar

EFEITO DO N 2 O EM ESPAÇOS FECHADOS u Espaço natural do ouvido médio v Efeitos adversos na audição por pressão v Na timpanoplastia, a elevação da pressão pode deslocar o enxerto v Por outro lado... u Pneumoencefalografia u Elevação na PIO hexafluoreto de enxofre

EFEITO DO SISTEMA ANESTÉSICO u A cal seca pode captar halotano u Seca ou úmida podem destruir sevo u Perda para plástico e cal sodada v Borracha ou plástico retiram o AI v Alta solubilidade do metoxiflurano v Menor para halotano e isoflurano v Pouco ou nada para sevo, desflurano e N 2 O

EFEITO DO SISTEMA ANESTÉSICO-REINALAÇÃO u Gás inspirado v Liberado pelo aparelho + exalado e reinalado u A reinalação é abolida por fluxos > 5l u Altos fluxos elevam a previsibilidade da CI, o desperdício e a poluição

Recuperação da Anestesia

HIPÓXIA DE DIFUSÃO u Na recuperação da anestesia u Fink Grandes volumes de N 2 O... u Substituindo o oxigênio u Ou diluindo o CO 2 u Evita-se com O 2 a 100 % ( min)

HIPÓXIA DE DIFUSÃO

JÁ ACABOU???!!!

Nascimento do príncipe Leopoldo Administrou clorofórmio à Rainha Vitória Escreveu tratado sobre o clorofórmio e outros anestésicos Foi considerado o 1º anestesiologista Foi considerado o 1º anestesiologista

Dose dependente

Freqüência cardíaca Índice cardíaco

SISTEMA CARDIOVASCULAR u Mecanismo da depressão cardíaca v Diminuição do Ca ++ livre 1- Interferindo no movimento de Ca ++ do sarcolema 2- Reduzindo a disponibilidade de Ca ++ no retículo sarcoplasmático v Alterando a sensibilidade das proteínas

Resistência vascular sistêmica Pressão arterial média

SISTEMA CARDIOVASCULAR u Efeitos no músculo liso vascular v Fator de relaxamento do endotélio v Depressão das proteínas contrateis v Libera Ca ++ no RS, mas diminui seu acúmulo

SISTEMA CARDIOVASCULAR u Efeitos na função barorrecptora v Todos deprimem resposta cronotrópica à hipotensão v Isoflurano causa a menor depressão v Estimulação simpática v Taquicardia não é confiável

SISTEMAS PARA ADMINISTRAÇÃO DE ANESTÉSICOS INALADOS Prof. Dr. Geraldo Rolim Rodrigues Jr. SISTEMAS PARA ADMINISTRAÇÃO DE ANESTÉSICOS INALADOS Prof. Dr. Geraldo Rolim Rodrigues Jr.

FUNÇÕES: 4 Levar oxigênio e gases anestésicos 4 Eliminar gás carbônico v Pela lavagem com gás fresco v Absorção por cal sodada ATRIBUTOS DESEJÁVEIS: 4 Pequeno espaço morto 4 Baixa resistência expiratória FUNÇÕES: 4 Levar oxigênio e gases anestésicos 4 Eliminar gás carbônico v Pela lavagem com gás fresco v Absorção por cal sodada ATRIBUTOS DESEJÁVEIS: 4 Pequeno espaço morto 4 Baixa resistência expiratória

4Aberto 4Semi-aberto 4Semi-fechado 4Fechado 4Aberto 4Semi-aberto 4Semi-fechado 4Fechado

4Não reinala gases expirados 4Ausência de bolsa reservatória 4Não impõe resistência respiratória 4Não reinala gases expirados 4Ausência de bolsa reservatória 4Não impõe resistência respiratória 4Altamente poluente 4Perda de umidade respiratória 4Incapacidade para controlar a ventilação 4Altamente poluente 4Perda de umidade respiratória 4Incapacidade para controlar a ventilação

4 Crianças maiores e adultos 4 Ocorre reinalação parcial 4 Presença de absorvedor de CO 2 4 Menos poluidor 4 Crianças maiores e adultos 4 Ocorre reinalação parcial 4 Presença de absorvedor de CO 2 4 Menos poluidor

4 Economia de gases frescos 4 Economia de anestésicos 4 Conservação de calor 4 Conservação de umidade 4 Menor poluição 4 Economia de gases frescos 4 Economia de anestésicos 4 Conservação de calor 4 Conservação de umidade 4 Menor poluição

4Concentração do oxigênio inspirado 4Administração anestésica 4Monitorização 4Concentração do oxigênio inspirado 4Administração anestésica 4Monitorização

4 MAPLESON A ou MAGILL - V.E. FGF=VM 4 MAPLESON B FGF=2VM 4 MAPLESON C FGF=2VM 4 MAPLESON D ou J.R.-BAIN V.C. FGF=2VM 4 MAPLESON E FGF=3VM 4 MAPLESON A ou MAGILL - V.E. FGF=VM 4 MAPLESON B FGF=2VM 4 MAPLESON C FGF=2VM 4 MAPLESON D ou J.R.-BAIN V.C. FGF=2VM 4 MAPLESON E FGF=3VM

C C

Cinco arranjos diferentes: A a E e F* 4Fluxo de gás fresco  reinalação 4Tubo corrugado, balão reservatório e válvula expiratória com mola 4Estuda-se a fase expiratória Cinco arranjos diferentes: A a E e F* 4Fluxo de gás fresco  reinalação 4Tubo corrugado, balão reservatório e válvula expiratória com mola 4Estuda-se a fase expiratória

Sistema de Magill 4Fluxo de gás fresco no final do aparelho 4Válvula próxima ao paciente 4Ventilação espontânea é ideal 4Controlada deve ser evitada Sistema de Magill 4Fluxo de gás fresco no final do aparelho 4Válvula próxima ao paciente 4Ventilação espontânea é ideal 4Controlada deve ser evitada

4Reinalação prevenida com baixos fluxos (> 1 x Vol.min -1 ) 4Só ocorre se FGF < 70% Vol.min -1 4A pressão abre a válvula expiratória 4Reinalação do gás do espaço morto 4Ineficiente sob VC 4Requer FGF > 20 l.min -1 4Reinalação prevenida com baixos fluxos (> 1 x Vol.min -1 ) 4Só ocorre se FGF < 70% Vol.min -1 4A pressão abre a válvula expiratória 4Reinalação do gás do espaço morto 4Ineficiente sob VC 4Requer FGF > 20 l.min -1

4Peça em T com braço expiratório 4Fluxo de gás fresco próximo ao paciente 4Válvula no final do aparelho 4Ventilação espontânea ou controlada são possíveis 4Peça em T com braço expiratório 4Fluxo de gás fresco próximo ao paciente 4Válvula no final do aparelho 4Ventilação espontânea ou controlada são possíveis

4Reinalação prevenida com altos fluxos (> 2 x Vol.min -1 ) 4Pausa expiratória longa 4FGF de 100 a 206 ml.kg -1.min l.min -1 < que 10 kg 43,5 l.min -1 entre 10 e 50 kg 470 ml.kg -1.min -1 > que 60 kg 4Reinalação prevenida com altos fluxos (> 2 x Vol.min -1 ) 4Pausa expiratória longa 4FGF de 100 a 206 ml.kg -1.min l.min -1 < que 10 kg 43,5 l.min -1 entre 10 e 50 kg 470 ml.kg -1.min -1 > que 60 kg

Jackson Rees, G (1950) Davenport, HT (1960) Freifeld, S (1963) Baraka, A (1969) Bain, JA (1972)

Modificação do Mapleson D 4Gás fresco pelo tubo interno 4Origem próxima ao balão, mas o FGF entra próximo ao paciente 4O tubo externo deve ser transparente para inspeção 4Desconexão ou torção Modificação do Mapleson D 4Gás fresco pelo tubo interno 4Origem próxima ao balão, mas o FGF entra próximo ao paciente 4O tubo externo deve ser transparente para inspeção 4Desconexão ou torção

4Reinalação prevenida com fluxos de 200 a 300 ml.kg -1.min -1 4Na VC, FGF de 70 ml.kg -1.min -1 4Ventilação espontânea/controlada 4Leve, conveniente, facilmente reutilizável e esterilizável 4Calor e umidade ao FGF 4Reinalação prevenida com fluxos de 200 a 300 ml.kg -1.min -1 4Na VC, FGF de 70 ml.kg -1.min -1 4Ventilação espontânea/controlada 4Leve, conveniente, facilmente reutilizável e esterilizável 4Calor e umidade ao FGF

C FGF

Modificação do T de Ayre 4Fluxo de gás fresco próximo ao paciente > 3 x Vol.min -1 4Sem balão, o braço é o reservatório 4Sem válvula expiratória 4Ventilação espontânea/controlada Modificação do T de Ayre 4Fluxo de gás fresco próximo ao paciente > 3 x Vol.min -1 4Sem balão, o braço é o reservatório 4Sem válvula expiratória 4Ventilação espontânea/controlada

Conhecido como Jackson-Rees 4Peça em T mais usada, é modificação do Mapleson D 4Mais usado para ventilação controlada 4FGF próximo ao paciente 4Válvula expiratória no balão Conhecido como Jackson-Rees 4Peça em T mais usada, é modificação do Mapleson D 4Mais usado para ventilação controlada 4FGF próximo ao paciente 4Válvula expiratória no balão

4Reinalação prevenida com FGF > 3 x Vol.min -1 4Popular para anestesia pediátrica 4Simples e barato 4Necessidade de FGF altos e falta de umidificação 4Cuidados com a válvula 4Reinalação prevenida com FGF > 3 x Vol.min -1 4Popular para anestesia pediátrica 4Simples e barato 4Necessidade de FGF altos e falta de umidificação 4Cuidados com a válvula

Ventilação Controlada Mapleson “D” Ventilação Espontânea Mapleson “A” Gás fresco Gás de Gás de espaço morto Gás alveolar

Maior eficiência na eliminação de CO 2 - Em Ventilação Espontânea- Em Ventilação Espontânea A D C B A D C B - Em Ventilação Controlada- Em Ventilação Controlada D B C A D B C A

4É o sistema mais popular nos EUA 4Componentes arrajados de forma circular 4Previne reinalação de CO 2 pela cal sodada 4Permite reinalação parcial de outros gases 4Economia de todos os gases 4É o sistema mais popular nos EUA 4Componentes arrajados de forma circular 4Previne reinalação de CO 2 pela cal sodada 4Permite reinalação parcial de outros gases 4Economia de todos os gases

4Constância relativa da concentração inspirada 4Conserva umidade e calor 4Minimiza poluição da sala cirúrgica 4Projeto complexo circuito com 10 conexões 4Menos conveniência e portabilidade 4Constância relativa da concentração inspirada 4Conserva umidade e calor 4Minimiza poluição da sala cirúrgica 4Projeto complexo circuito com 10 conexões 4Menos conveniência e portabilidade

4Duas válvulas unidirecionais 4Válvula expiratória 4Bolsa reservatória 4Absorvedor de CO 2 4Conector em Y 4Duas válvulas unidirecionais 4Válvula expiratória 4Bolsa reservatória 4Absorvedor de CO 2 4Conector em Y

entradaentrada válvula inspiratória válvulaexpiratóriaválvulaexpiratória descargadescarga bolsa reservatório absorvedorabsorvedor Gás alveolar Gás do espaço morto Gás fresco A. próximo ao fim da inspiração A. próximo ao fim da inspiração B. meio da expiração expiração C. próximo ao fim da expiração C. próximo ao fim da expiração

A. meio da expiração B. fim da expiração entradaentrada válvula inspiratória válvularespiratóriaválvularespiratória sobrecargasobrecarga bolsa reservatório absorvedorabsorvedor gás fresco gás alveolar gás do espaço morto

1. Válvula unidirecional entre paciente e bolsa tanto no ramo inspiratório como no expiratório 2. FGF não deve entrar no circuito entre válvula expiratória e o paciente 3. Válvula expiratória não deve estar entre paciente e válvula inspiratória 1. Válvula unidirecional entre paciente e bolsa tanto no ramo inspiratório como no expiratório 2. FGF não deve entrar no circuito entre válvula expiratória e o paciente 3. Válvula expiratória não deve estar entre paciente e válvula inspiratória