Aula-11 (quase) Tudo sobre os átomos Curso de Física Geral F-428.

Slides:



Advertisements
Apresentações semelhantes
(COVEST – 1991) em uma experiência realizada por Rutherford, um feixe de núcleos de Helio (partículas α) incidiu sobre uma fina folha de ouro. Nesta experiência.
Advertisements

QUÍMICA GERAL Aula 02 – Estrutura da Matéria e Atomística
3. Movimento nuclear – o problema da massa reduzida
II- 1. O átomo de Hidrogênio – Solução de Schrödinger
Universidade Federal de Rondônia Campus Ji-Paraná
RADIAÇÃO TÉRMICA.
Conceitos Básicos sobre Laser
ESTRUTURA DO ÁTOMO.
Escola estadual braz sinigáglia
CONCEITOS TEORIA ATÔMICA
Johannes Diderik van der Waals
ESTRUTURA INTERNA DOS MATERIAIS
ÁTOMOS: ESTRUTURA ELETRÔNICA.
1. ESTRUTURA ATÔMICA CONCEITOS FUNDAMENTAIS ELÉTRONS NOS ÁTOMOS
EE-03 FUNDAMENTOS DE FOTÔNICA
ELETROSFERA DO ÁTOMO Em torno do núcleo do átomo temos
Átomo moderno e o Diagrama de Linus Pauling
Capítulo 40 Mais ondas de matéria.
Capítulo 40 Mais ondas de matéria.
Curso de Pós- Graduação em Física
QUÍMICA GERAL ESTRUTURA ATÔMICA Prof. Sérgio Pezzin.
QUÍMICA GERAL ESTRUTURA ATÔMICA PARTE 2 Prof. Sérgio Pezzin.
UNIDADE 1 - DAS ESTRELAS AO ÁTOMO
NÚMEROS QUÂNTICOS PRINCIPAL, SECUNDÁRIO, MAGNÉTICO E SPIN
Modelos Atômicos de Bohr ao “átomo moderno”.
Modelos Atômicos.
Prof. carlos eduardo saes moreno
Slides para o 1° ano Cpmg-HCR IDENTIFICANDO O ÁTOMO
Modelo Atômico Clássico
Prof. Carlinhos.
Cap. 39 – Mais ondas de matéria
O Modelo Atômico de Bohr
Germano Maioli Penello Reinaldo de Melo e Souza
Conceitos de Astrofísica
Modelo Quântico.
O Átomo de Hidrogênio Equação de Schrödinger em coordenadas esféricas:
UNIDADE 2 - NÚMEROS QUÂNTICOS
Teoria Atômica O Átomo Quântico.
Estrutura Atômica e Ligações Interatômicas
C M B H C F B 9º A n o q u í m i c a.
Atomística (I parte): O estudo histórico do átomo
Capítulo 6 Estrutura eletrônica dos átomos
Estrutura Atômica Prof. MARCUS RIBEIRO.
Diagrama de Linus Pauling
Aula-8 Fótons e ondas de matéria III
O átomo nuclear de Rutherford
Estrutura eletrônica dos átomos
Isóbaros Isótopos Isótonos Isoeletrônicos
Universidade Federal de Itajubá
Teorias, modelos atômicos e estrutura atômica dos átomos:
ÁTOMOS E ELEMENTOS Profa. Dra. Aline Rodrigues Soares
Matéria é tudo que tem massa e ocupa lugar no espaço
Aula-10 Mais Ondas de Matéria II
O Modelo Atômico de Bohr
Estrutura eletrônica dos átomos
QUIMICA Cap. 6 Integrantes: Bruno Antonio Carlos.
Disciplina : Ciência dos Materiais LOM 3013 – 2015M1
Átomos Capítulo Modelos Atómicos
Estrutura eletrônica dos átomos
Capítulo 41 Tudo sobre átomos.
REVISÃO Q1) (UFES/2009) A distribuição eletrônica correta do elemento químico Au, em camadas, é a) K = 2 L = 8 M = 18 N = 32 O = 17 P = 2 b) K = 2 L =
Prof: Hugo Cesário.
ESTRUTURA ELETRÔNICA DOS ÁTOMOS
ÁTOMO DE HIDROGÊNIO Tratamento quântico requer a solução da equação de Schrödinger Aplica-se o modelo de partícula quântica sob condições de contorno para.
PROFESSORA: Shaiala Aquino
Prof: Hugo Cesário. Modelos atômicos quânticos Problemas de Rutherford: Modelo entrou em choque com os conceitos de Física clássica. Todo corpo carregado.
Unidade Um Das Estrelas ao Átomo
TEO 5:INTRODUÇÃO A RADIOPROTEÇÃO
INTREPRETAÇÃO FÍSICA DOS NÚMEROS QUÂNTICOS A energia de um estado particular depende do número quântico principal. A energia de um estado particular depende.
É uma onda eletromagnética
Transcrição da apresentação:

Aula-11 (quase) Tudo sobre os átomos Curso de Física Geral F-428

Algumas propriedades: Átomos são estáveis (quase sempre) Os átomos se combinam (como o fazem é descrito pela mecânica quântica) Os átomos podem ser agrupados em famílias (propriedades periódicas com o número atômico) Emitem e absorvem radiação EM Os átomos possuem momento angular e magnético...

A tabela periódica dos elementos

Propriedades periódicas energia de ionização

Propriedades periódicas: raio atômico Número de elementos em cada período: 2, 8, 8, 18, 18, 32

Absorção e emissão de luz: propriedades atômicas & teste da teoria As linhas espectrais

O modelo de Bohr: bom para o H, mas os outros elementos...

Revisão do problema do átomo de hidrogênio:

Revisão do problema do átomo de hidrogênio: números quânticos Como o potencial só depende de r, a função de onda pode ser separada (coordenadas esféricas) Resultando em 3 equações para as coordenadas eletrônicas do átomo de H ! símbolo valores n 1,2,3, l 0,..,n-1 m -l,..,l n número quântico principal l número quântico orbital m número quântico magnético

Revisão do problema do átomo de hidrogênio: números quânticos Número quântico principal já aparece no modelo de Bohr Que efeitos são devidos aos outros números quânticos ?

Momento magnético atômico: estimativa clássica

Experimento de Einstein – de Haas (1915): momento magnético dos átomos cilindro de Fe Lrot µ B Lat

Interpretação correta do experimento: Resultado clássico Resultado experimental (porque na realidade se alinham os spins dos elétrons !) × 2

Momento angular orbital Na solução da equação de Schrödinger para o átomo de hidrogênio temos: Quantização do momento angular de acordo com: Momento angular orbital:

Momento angular e momento magnético Momento magnético orbital: Esses momentos não são observados diretamente. Suas componentes paralelas a um campo magnético podem ser medidas.

Componente z do momento angular: número quântico magnético

Spin do elétron Componente z do momento: Momento magnético: Fator "g" do elétron: g = 1 momento angular orbital g = 2,0232 para o spin

Números quânticos Número quântico principal já aparece no modelo de Bohr Que efeitos são devidos aos outros números quânticos ? Desdobramento das linhas espectrais na presença de campos externos

Interação com campo B externo: efeito Zeeman Ex.: Linhas espectrais do sódio (sob campo forte) ml ml + 2ms 1 3p -1 Regras de seleção símbolo valores n 1,2,3,... l 0,..,n -1 m -l,..,l 3s

Interação com campo B externo: efeito Zeeman Linhas espectrais do sódio (campo fraco) Acoplamento spin-órbita

Soma dos momentos angulares

Interação com campos “internos”: estrutura fina

Problema 40.9 (Halliday, 7ª edição) Um elétron de um átomo se encontra em um estado com ℓ = 3. Determine: (a) o módulo de ; L = (b) o módulo de ; (c) o maior valor possível de mℓ ; (d) o valor correspondente de Lz ; (e) o valor correspondente de μorb,z ; (f) o valor do ângulo semiclássico θ entre as direções de Lz e ; (g) valor de θ para o segundo maior valor possível de mℓ ; (h) valor de θ para o menor valor possível (o mais negativo) de mℓ ; como: → ℓ = 3 e ; ℓ = 3 e ;

O experimento de Stern Gerlach

O experimento de Stern Gerlach Por que Ag ? ... 5s1 4d10 Por que B não homogêneo ?

O experimento de Stern Gerlach EK

O experimento de Stern Gerlach O experimento foi realizado com um feixe de átomos de prata de um forno quente porque podiam ser facilmente detectados em uma emulsão fotográfica. Os átomos de prata permitiram a Stern e Gerlach estudar as propriedades magnéticas de um único elétron, pois esses átomos têm um único elétron “exterior” que se move em um potencial coulombiano causado por 47 prótons do núcleo blindados por 46 elétrons de caroço. Como esse elétron tem momento orbital angular nulo (l = 0), esperava-se que uma interação com um campo magnético externo só seria possível se existisse o momento de spin.

Problema (7ª edição) 40.12 Suponha que no experimento de Stern-Gerlach executado com átomos neutros de prata o campo magnético tenha um módulo de 0,50 T. (a) Qual é a diferença de energia entre os átomos de prata nos dois subfeixes? (b) Qual é a freqüência da radiação que induziria transições entre estes dois estados? (c) Qual é o comprimento de onda desta radiação? (d) Em que região do espectro eletromagnético está situada?

Curiosidades históricas http://www.physicstoday.org/vol-56/iss-12/p53.html#ref Otto Stern (1888-1969) Walther Gerlach (1889-1979), stern-gerlach

Ressonância magnética Energia absorvida na região de radio-freqüências:

Comparação entre ressonâncias: spin eletrônico e nuclear ( sob campo externo B = 1 T )

Freqüências de ressonância Partícula Spin wLarmor/B s-1T-1 n/B Elétron 1/2 1.7608 x 1011 28.025 GHz/T Próton 2.6753 x 108 42.5781 MHz/T Deutério 1 0.4107 x 108 6.5357 MHz/T Neutron 1.8326 x 108 29.1667 MHz/T 23Na 3/2 0.7076 x 108 11.2618 MHz/T 31P 1.0829 x 108 17.2349 MHz/T 14N 0.1935 x 108 3.08 MHz/T 13C 0.6729 x 108 10.71 MHz/T 19F 2.518 x 108 40.08 MHz/T

Imagem por ressonância nuclear magnética Diferentes tecidos têm ambientes magnéticos diferentes (o campo ao qual os prótons estão submetidos é devido ao campo externo aplicado e aos diferentes ambientes locais: Spins eletrônicos + nucleares de Átomos vizinhos) http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/mri.html

Princípio de exclusão de Pauli Wolfgang Pauli (1900-1958) “Em um sistema fechado, dois elétrons não podem ocupar o mesmo estado quântico”

Princípio de exclusão de Pauli 2 elétrons têm conjuntos diferentes de números quânticos elétrons são partículas idênticas e indistinguíveis Bósons: fótons... Férmions: elétrons, prótons, neutrons.. Amplitude de probabilidade para que os estados a e b sejam ocupados pelos elétrons 1 e 2

Aplicação do princípio de exclusão de Pauli: tabela periódica dos elementos estado número número número número número quântico quântico quântico quântico máximo principal orbital magnético de spin de elétrons

Construção da tabela periódica: preenchimento Para um elétron único, a energia é determinada pelo número quântico principal, que é usado para indicar a camada. Para uma dada camada em átomos multi-eletrônicos, elétrons com número quântico orbital mais baixo terão energia menor, devido a maior penetração na blindagem dos elétrons das camadas internas Elementos de transição Existem algumas exceções: a primeira é o cromo, seguido de cobre (alguns 3d são preenchidos antes do segundo 4s), molibdênio e prata

Dependência das energias eletrônicas com o número quântico orbital Se a blindagem dos elétrons 1s fosse perfeita, os elétrons 2s e 2p teriam a energia de n = 2 (níveis do H)

A tabela periódica dos elementos

Espectro de raios X A tabela periódica passou a ser determinada pelo número atômico e não pela massa atômica As linhas de emissão de raios X dependem do elemento químico e- hf e- e-

Espectro característico Ze e- Linhas K do molibdênio a 35 kV

Espectro característico Z Z - 1 (blindagem)

Lasers Propriedades Luz altamente monocromática X para descarga num gás Luz altamente coerente X para descarga num gás Luz altamente colimada: divergência só depende da difração Luz precisamente focalizável

Lasers http://www.colorado.edu/physics/2000/lasers/index.html

Lasers Estado metaestável 20 eV Colisões entre He-Ne Luz do laser: 632,8 nm decaimento rápido Excitação por colisões entre elétrons e átomos de He He (20%) Ne(80%)