Metabolismo Microbiano

Slides:



Advertisements
Apresentações semelhantes
Patrícia Rosa de Araujo
Advertisements

Fotossíntese e Respiração Celular
A energia nos seres vivos
Metabolismo Energético das Células
Prof. Waldemar Ernani Martins
Respiração Celular.
RESPIRAÇÃO CELULAR.
Metabolismo microbiano
Metabolismo microbiano
Metabolismo Microbiano
Metabolismo microbiano
Metabolismo Microbiano
Metabolismo e crescimento Microbiano
Metabolismo Microbiano
Metabolismo e crescimento Microbiano
Metabolismo Microbiano
RESPIRAÇÃO AERÓBIA Depende fundamentalmente de um organóide citoplasmático denominado mitocôndria. MITOCÔNDRIA MEMBRANA INTERIOR MEMBRANA EXTERIOR CRISTAS.
Metabolismo Energético
Respiração Celular É o processo de conversão da energia contida em ligações químicas de moléculas em ATPs que podem ser usados nos processos vitais. A.
Metabolismo Celular Metabolismo:
Metabolismo Energético Celular
Disciplina de Biociências I Unidade 3 – Metabolismo Celular GLICÓLISE
DISCIPLINA DE BIOQUÍMICA DB-105
RESPIRAÇÃO CELULAR AERÓBICA
Fotossíntese.
Metabolismo energético
FOTOSSÍNTESE. ADENOSINA (nucleotídeo) NUCLEOTÍDEO = adenosina monofosfato (AMP)Adenosina difosfato (ADP) Adenosina trifosfato (ATP) Adenina Fosfato.
AULA 07 FOTOSSÍNTESE E RESPIRAÇÃO.
RESPIRAÇÃO CELULAR.
TRANSFERÊNCIA DE MATÉRIA E ENERGIA
Metabolismo dos carboidratos
FOTOSSÍNTESE.
Metabolismo Celular Metabolismo  conjunto de reações químicas que ocorrem no organismo. Reagentes Produtos Energia.
A obtenção de energia pela célula
Metabolismo e Processos Microbianos
INTRODUÇÃO AO METABOLISMO
Biologia Departamento: Bioquímica
RESPIRAÇÃO CELULAR E FERMENTAÇÃO
Bioenergética estuda a transferência,conversão e utilização da energia em sistemas biológicos exemplos: conversão de moléculas dos nutrientes em outras.
MITOCÔNDRIA RESPIRAÇÃO CELULAR
METABOLISMO CELULAR  FERMENTAÇÃO & RESPIRAÇÃO.
AULA 9 Sobre “Bioenergética”, enfocar: Conceito; Importância do ATP;
Respiração Celular.
Apresentação desenvolvida pelo Prof. Bruno Cacique
FOTOSSÍNTESE.
FUNDAMENTOS DE BIOQUÍMICA
Introdução ao metabolismo
Biologia 2.
Metabolismo energético
Aula 3 – Bioenergética, fermentação e Respiração Celular 05/04/2011
RESPIRAÇÃO AERÓBIA Depende fundamentalmente de um organóide citoplasmático denominado mitocôndria. MITOCÔNDRIA MEMBRANA INTERIOR MEMBRANA EXTERIOR CRISTAS.
METABOLISMO ENERGÉTICO
METABOLISMO CELULAR  FERMENTAÇÃO & RESPIRAÇÃO.
Metabolismo Anabolismo Catabolismo
Fotossíntese e Respiração Celular
Biologia Celular Aula 9 e 10 Respiração Celular Aeróbia
Organelas e metabolismo energético da célula
METABOLISMO CELULAR  RESPIRAÇÃO.
PROFESSOR HELIOMAR.
O que é energia? Física: É a capacidade de realizar trabalho;
3. Queima dos hidrogênios, na cadeia respiratória
Clique na imagem para obter informação sobre cada via
METABOLISMO MICROBIANO
PROCESSOS ENERGÉTICOS: FOTOSSÍNTESE E RESPIRAÇÃO
Bioenergética.
Respiração celular.
CADEIA RESPIRATÓRIA.
Transformação e utilização de energia pelos seres vivos Obtenção de energia 1.
PROCESSOS ENERGÉTICOS CELULARES
INTRODUÇÃO AO METABOLISMO
Transcrição da apresentação:

Metabolismo Microbiano Produção de Energia e Biossíntese Pelczar, Caps. 11 e 12, páginas 290 - 330 Conceitos básicos Classes microbianas Quimiotrofia Fototrofia Quimiolitotróficos Integração metabólica

1. Introdução Metabolismo: São de 2 tipos: toda a atividade química realizada por um organismo e seu maquinário. São de 2 tipos: aquelas que liberam E = exergônicas - catabólicas aquelas que utilizam E = endergônicas - anabólicas E = capacidade de realizar trabalho química luminosa E

2. Produção de Energia (E) Requerimentos de energia:

Degradação Síntese Crescimento celular, reprodução, manutenção Sistema de armazenamento e transferência de E Componentes celulares como proteínas (enzimas), DNA, RNA, carboidratos, lipídeos, etc. Produtos da degradação servem como unidades para a produção de compostos celulares Síntese Compostos e estruturas Degradação Quebra de substratos ou nutrientes E liberada E requerida Crescimento celular, reprodução, manutenção e movimento

Tipos de energia Energia química – energia contida em ligações químicas das moléculas Energia radiante (energia da luz) – deve ser convertida em energia química

(utilizam substâncias Classificação dos microrganismos de acordo com a fonte de energia e carbono Quimiotróficos (utilizam substâncias químicas como fonte de energia) Quimiolitotróficos C= CO2 Quimiorganotróficos C=orgânico

Classificação dos microrganismos de acordo com a fonte de energia e carbono

Moléculas inorgânicas Classificação dos microrganismos de acordo com a fonte de energia e carbono Tipo fisiológico Fonte de Energia Fonte de Carbono Foto Luz Quimio Química Organotrófico/heterotrófico Moléculas orgânicas Autotrófico/litotrófico Moléculas inorgânicas Fotoautotrófico = plantas, cianobactérias, algas verdes Fotoorganotrófico/hetero = bactérias púrpuras, exceto as abaixo Fotolitotróficas = bactérias púrpuras metabolizantes do S Quimioautotrófico = Archaea metanogênicas Quimiorganotrófico/hetero = maioria bactérias e fungos Quimiolitotrófico = bactérias nitrificadoras

Enzimas Catalisadores das reações Aumentam as velocidades de reação de 108 a 1020 vezes Tem sítios ativos de ligação do substrato Podem conter outras moléculas acopladas Grupos prostéticos – grupo heme dos citocromos é um exemplo Coenzimas – derivadas de vitaminas (NAD+/NADH) Terminação ase ao seu substrato Celulase: degradam celulose Glicose-oxidase: catalisa a oxidação da glicose Ribonuclease: decompõe acido ribonucleico Lisozima: cliva o peptideoglicano

Catalise e enzimas Reação exergônica

COMPLEXO ENZIMA-SUBSTRATO

Compostos ricos em energia: armazenamento e transferência de energia (imediata) ATP = adenosina trifosfato ADP = adenosina difosfato Fosfoenolpiruvato Glicose-6-fosfato Coenzimas: Acetil CoA, NAD, NADH, NADPH

Armazenamento de energia Ligacoes tioéster (Madigan et al., 2010)

O ATP é o composto de alta energia mais importante nos seres vivos. Apesar disso, sua concentração nas células é relativamente baixa. Para o armazenamento de energia por períodos longos, os microrganismos produzem polímeros insolúveis. Ex.: polímeros de glicose (amido e glicogênio), polímeros lipídicos, PHAs (biopoliéster). Ralstonia eutropha

Compostos ricos em energia: armazenamento e transferência de energia (a longo prazo) Procariotos: Glicogenio Poli-β-hidroxibutirato Poli-idroxialcanoatos S (elementar) Eucariotos Poliglicose na forma de amido Lipídeos na forma de gorduras

4. Geração de ATP por microrganismos Ausência de aceptores exógenos de elétrons O2 ou outro composto como aceptor exógeno de elétrons Menos E Mais E Fermentação Respiração Síntese de ATP acoplada a reações de óxido-redução Oxidação = perda de e- (liberam energia) Redução = ganho de e- (requerem energia)

As reações de oxi-redução (redox) Um composto se torna oxidado quando: Perde elétrons Se liga a um átomo mais eletronegativo Isto geralmente ocorre quando se liga ao oxigênio - Um composto se torna reduzido quando: Ganha elétrons Se liga a um átomo menos eletronegativo E geralmente isto ocorre quando se liga ao hidrogênio Formas reduzidas de C (carboidratos, metano, lipídios, álcoois) são importantes estoques de energia em suas ligações. Formas oxidadas de C (cetonas, aldeídos, ácidos carboxílicos e CO2) dispõem de pequeno potencial energético em suas ligações.

Mecanismos para conservação de energia (Síntese de ATP) Os quimiotróficos apresentam dois mecanismos conhecidos: 1. Respiração: atuam aceptores externos de elétrons (fosforilação oxidativa) Podendo ser: a) Aeróbia: o aceptor externo é o oxigênio b) Anaeróbia: aceptores diferentes do oxigênio (nitrato, sulfato, carbonato, ...) 2. Fermentação: ocorre na ausência de aceptores externos de elétrons (fosforilação a nível de substrato) 1a) Respiração aeróbia É o procedimento mais comum às células e compreende 3 etapas: Piruvato (glicólise quando o substrato é a glicose) Ciclo do ácido cítrico (ciclo de Krebs) Cadeia respiratória

1ª etapa: Piruvato (via glicolítica) É considerada a via metabólica mais primitiva, presente em todas as formas de vida atuais. Ocorre no citoplasma das células. Características: Oxidação parcial da glicose a piruvato Pequena quantidade de ATP é gerada (produção líquida de 2 ATP) Pequena quantidade de NAD é reduzida a NADH

2ª etapa: Ciclo de Krebs Ocorre no citoplasma (procariotos) e nas mitocôndrias (eucariotos). Reações preparatórias: formação de composto chave do processo Produção direta de 1 GTP guanosina trifosfato (equivalente ao ATP) Além do papel-chave nas reações catabólicas, é importante nas reações biossintéticas. Os intermediários são desviados para vias biossintéticas quando necessário: Exemplos: Oxalacetato: precursor de aminoácidos Succinil-CoA: formação de citocromos e da clorofila, entre outros Acetil-CoA: biossíntese de ácidos graxos

3ª etapa: Cadeia respiratória (sistema de transporte de elétrons) Ocorre ao nível da membrana das mitocôndrias (eucariotos) e na membrana citoplasmática (procariotos) Os prótons e elétrons recolhidos na glicólise pelo NAD e no Ciclo de Krebs pelo NAD e FAD são transportados ao longo de uma cadeia de citocromos em níveis sucessivamente mais baixos de energia de modo que seja melhor aproveitada na formação de ATP.

Fosforilação oxidativa Geração da força protomotiva

As 3 etapas da via respiratória

Síntese da respiração aeróbia Reações de oxidação e redução em presença de um aceptor de elétrons externo, o O2 A molécula inteira do substrato é oxidada até CO2 Alto potencial de energia Grande quantidade de ATP pode ser gerada: teoricamente até 38 ATPs Produção de ATP: Na cadeia respiratória: 4 NADH formados na glicólise geram 12 ATP 6 NADH formados no ciclo de Krebs geram 18 ATP 2 FADH formados no ciclo de Krebs geram 4 ATP Formação direta na Glicólise 2 ATP Formação direta no Ciclo de Krebs 2 GTP Total de até .................................................... 38 ATP

1b) Respiração anaeróbia É uma variação alternativa da respiração aeróbia: o aceptor de elétrons não é o oxigênio. Uma implicação é o rendimento energético inferior: nenhum aceptor alternativo apresenta potencial tão oxidante quanto O2. O uso de aceptores alternativos permitem os microrganismos respirarem em ambientes sem oxigênio, sendo de extrema importância ecológica. Oxidação de substratos orgânicos ou inorgânicos: C6H12O6 + 12 NO3-  6CO2 + 6H2O + 12NO2- 2 lactato + SO4= + 4H+  2 acetato + 2CO2 + S= + H2O Quantidade de energia produzida é menor

2. Fermentação (também é uma forma de respiração anaeróbia 2. Fermentação (também é uma forma de respiração anaeróbia. Ocorre no citossol) Reação de oxidação-redução internamente balanceada. Ausência de aceptores externos. A concentração de NAD+ nas células é baixo, precisando ser re-oxidado para não cessar a via glicolítica. A redução do piruvato a etanol ou outros produtos restabelece o NAD e permite a continuidade da glicólise . Produção líquida de apenas 2 ATP.

Características da Fermentação: Ácido pirúvico é reduzido a ácidos orgânicos e álcoois NADH é oxidado a forma NAD: essencial para operação continuada da via glicolítica O2 não é necessário Não há obtenção adicional de ATP. Gases (CO2 e/ou H2) podem ser produzidos

Produtos da fermentação Espécie microbiana Principal produto da fermentação Acetivibrio cellulolyticus Ácido acético Actinomyces bovis Ácidos acético, fórmico, láctico, etc. Clostridium acetobutylicum Acetona, butanol, etanol, ácido fórmico, etc. Enterobacter aerogenes Etanol, ácido fórmico, CO2, etc. Escherichia coli Etanol, ácidos láctico, acético, fórmico, succínico, etc. Lactobacillus brevis Etanol, glicerol, CO2, ácidos láctico, acético, etc. Streptococcus lactis Ácido láctico Succinimonas amylolytica Ácidos acético e succínico

Fermentações

Fototropia A utilização da energia da luz - Fotossíntese a) Fotossíntese oxigênica Presente nas cianobactérias e nos cloroplastos dos eucariontes (algas por ex.) Doador de elétrons é H2O: sua oxidação gera o O2 Dois fotossistemas: PSI e PSII Maior função é produzir ATP e NADPH para a fixação de carbono. Cloroplasto de eucariotos Cianobactérias Fotossistemas em lamelas

Fotossíntese oxigênica Cianobactérias

Fotofosforilação A energia da luz é utilizada para a síntese de ATP O NADPH é utilizado para reduzir o CO2 no processo de fixação do carbono

b) Fotossíntese anoxigênica Doadores de elétrons variam: H2S or So nas bactérias verdes e púrpuras sulfurosas H2 ou compostos orgânicos em bactérias verdes e púrpuras não sulfurosas Apenas um fotossistema Bactérias verdes tem foto-sistema semelhante ao PSI Bactérias púrpuras tem foto-sistema semelhante ao PSII Principal função é produzir ATP via fotofosforilação

Biossíntese Energia para síntese de compostos celulares: ácidos nucléicos (DNA, RNA), substâncias nitrogenadas (aa, enzimas, proteínas), carboidratos (peptidoglicano), lipídeos, etc. ATP para processos como divisão celular, mobilidade, transporte ativo de nutrientes, etc.

Utilização de energia

Biossíntese de Compostos Nitrogenados N inorgânico (NH3+) Aminoácidos Arranjo de aminoácidos Proteínas/enzimas Purinas e pirimidinas Nucleotídeos Ácidos nucléicos (DNA, RNA)

Fornecimento de precursores de aminoácidos (Madigan et al., 2004)

Biossíntese de nucleotídeos e ácidos nucléicos Nucleotídeo = base nitrogenada-pentose-fosfato ribose = ribonucleotídeos (RNA) desoxirribose = desoxirribonucleotídeos (DNA) Ativação dos nucleotídeos (ATP) Síntese de ácidos nucléicos a partir de nucleotídeos ativados

Biossíntese de nucleotídeos e ácidos nucléicos (Madigan et al., 2004)

Biossíntese de carboidratos CO2 Triose Pentoses e hexoses Nucleotídeos Polissacarídeos (peptidoglicano, celulose, amido, etc.) RNA e DNA

Biossíntese de ácidos graxos Glicose Glicólise Ácido pirúvico Acetil CoA e Malonil CoA Ácidos graxos de cadeia longa Glicerol fosfato Fosfolipídios

Outras utilizações de energia Transporte Motilidade Reparos Produção de estruturas de resistência (endosporos)