Formação de Imagem - Sampling www.dca.ufrn.br/~lmarcos/courses/visao.

Slides:



Advertisements
Apresentações semelhantes
Melhoramento de Imagens
Advertisements

VIII Espectroscopia luz luz Método envolve: excitação detecção Fontes
Matéria Escura. Introdução Cerca de 90% do Universo é escuro, ou seja, não emite radiação eletromagnética, só sabemos da existência dessa matéria escura.
Lista 3!!!.
Lista 3!!!.
Modelo planetário: errado Elétrons são descritos por meio de funções de onda Mecânica Quântica : probabilidades.
Ondas distúrbio / variação de uma grandeza física se propagam
Espelhos planos e esféricos
Transporte em Nanoestruturas. I) Transporte balístico Um material unidimensional (confinado em duas dimensões) transporta carga quando uma voltagem é
PGF5001 – Mecânica Quântica 1 Prof. Emerson Passos.
Prof. Celso Gramática.
Introdução a Resolução Numérica de Equações Diferenciais Ordinárias
INTRODUÇÃO À GEOMETRIA DO ESPAÇO-TEMPO
MÉTRICA ds2=dx2+dy2 Distância entre dois pontos numa superfície
CAPÍTULO 9 cosmologia relativística.
►► outras formas dessa equação:
GEOMETRIA DE ESPAÇOS CURVOS
(projetado sobre o plano)
Relações de Escala Teorema do Virial A velha Física no Espaço … (II)
COMPRESSÃO DE FILMES GRUPO: Alessandra Antunes Vargas Anderson Konzen
Compressão de Voz Francisco Socal Tiago Peres Leonardo Silveira.
Ilusão de Ótica O termo Ilusão de óptica aplica-se a todas ilusões que «enganam» o sistema visual humano fazendo-nos ver qualquer coisa que não está presente.
PROFESSOR: MARCELO ALANO. REVISÃO PARA 3º ANO
Técnicas de Processamento Imagens
Técnicas de Processamento Imagens
PotenCial ElÉTRICO Universidade Federal do Paraná
Processamento Digital de Imagens
"Tudo o que acontece, acontece em algum lugar." Gilberto Câmara - INPE Gilberto Câmara - INPE.
SENSORIAMENTO REMOTO  O QUE É?
Função Gráficos. Domínio e imagem no gráfico.
Materiais Propriedades mecânicas Reologia.
TA 733 A – Operações Unitárias II
Transferência de Calor por Radiação Térmica
TA 733 A – Operações Unitárias II Transferência de Calor
Processamento de Imagens
Juiz Virtual: uma aplicação de modelagem baseada em imagens Paulo Cezar P. Carvalho (IMPA) Flávio Szenberg (PUC-Rio) Marcelo Gattass (PUC-Rio)
Probabilidade e Esperança Condicional
Marcelo Bernardes Vieira
Variáveis Aleatórias Uma variável aleatória associa um número real a cada resultado de um experimento aleatório. Mais precisamente…
Copyright, 1999 © Marcelo Knörich Zuffo PEE-EPUSP Visualização Científica PSI a Aula – Conceitos Básicos de Iluminação.
Modelos de Iluminação Daniel Lemos. Definição MODELOS DE ILUMINAÇÃO são técnicas usadas para calcular a intensidade da cor de um ponto a ser exibido.
II – Modelos Globais de Iluminação – Cenário Estático Escola Politécnica da USP Engenharia de Sistemas Eletrônicos Marcio Lobo Netto
Modelos de Iluminação e Tonalização
Já definimos o coeficiente angular de uma curva y = f(x) no ponto onde x = x 0. Derivadas Chamamos esse limite, quando ele existia, de derivada de f em.
Teorema do Confronto Se não pudermos obter o limite diretamente, talvez possamos obtê-lo indiretamente com o teorema do confronto. O teorema se refere.
TÉCNICAS DE CODIFICAÇÃO DE SINAIS
PRINCÍPIOS DE COMUNICAÇÕES
TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA
Interpolação Introdução Conceito de Interpolação
Aritmética de ponto flutuante Erros
Resolução de Sistemas Não-Lineares- Parte 1
Sistemas Lineares Parte 2
Resolução de Sistemas Lineares- Parte 1
7. INTEGRAÇÃO NUMÉRICA Parte 1
PROTEÍNAS.
Otimização Aplicada ao Dimensionamento e Operação de Reservatórios
Formação de Imagem - Sampling
Visão Computacional Shape from Shading e Fotométrico Eséreo
Formação de Imagem - Aquisição
Visão Computacional Formação da Imagem
Visão Computacional Formação da Imagem
Visão Computacional Radiometria
Robótica: Sistemas Sensorial e Motor
Computação Gráfica Visualização 3D
Antialiasing MC930 Computação Gráfica Luiz M. G. GOnçalves.
Computação Gráfica Geometria de Transformações
Processamento de Pixel
Prof. André Laurindo Maitelli DCA-UFRN
1 Seja o resultado de um experimento aleatório. Suponha que uma forma de onda é associada a cada resultado.A coleção de tais formas de ondas formam um.
8. Uma Função de duas Variáveis Aleatórias
Transcrição da apresentação:

Formação de Imagem - Sampling

Visão adquirindo imagem

Visão - Formação de Imagem Energia de uma fonte de luz é radiada uniformemente em 4 radianos Irradiância é a soma de toda a luz incidente na imagem Reflexão pode ser difusa ou especular, depende da superfície e comprimento de onda da luz Superfície que reflete energia eletro-magnética modula o conteúdo do espectro, intensidade e polarização da luz incidente Função da intensidade radiante é projetada no plano imagem 2D, espacialmente amostrada e digitalizada a 30 fps.

Formação da imagem Geometria da câmera (lentes finas) –equação fundamental 1 /Z´ + 1/z´ = 1/f Radiometria E(p) = f(L(P)) –reflexão Lambertiana L= I t n (I transposto) –ângulo sólido = A cos / r 2 –equação fundamental E(p) = L(p) /4 (d/f) 2 cos 4

Formação Geométrica da Imagem Relação entre a posição dos pontos da cena com a imagem Câmera perspectiva Câmera com fraca perspectiva

Modelo perspectivo ideal P p O P O oP1P1 p p1p1 yx z y x z Plano imagem f f o P1P1 p1p1

Modelo ideal

Inversão de Percepção Se estímulos sensoriais são produzidos de um único modo pelo mundo, então como deveria ser o mundo para produzir este estímulo? estimulo = f(mundo) mundo = f -1 (estímulo) As funções f() são apenas parcialmente conhecidas e f -1 (), inversa de f não é bem condicionada (não se comporta direito).

Conhecimento e Experiência Adquire-se através da associação de dados sensoriais de forma eficiente Conseguem preencher espaços inacessíveis pelo processo de formação de imagens Engana o cérebro

Representação matricial

Imagem e seu gráfico

Reconstrução – Amostragem Espacial

Amostragem - resolução espacial Variação da amostragem no espaço –imagens com diferentes resoluções (pixels cobrem áreas diferentes)

Amostragem - quantização Variação da amostragem pela quantização –número de níveis de intensidade para cada pixel varia de uma imagem para outra

Amostragem - quantização

Amostragem-resolução temporal Variação da amostragem no tempo –tempo de amostragem do sensor é diferente –usando sistemas de aquisição diferentes Influencia qualidade final de cada pixel

Propriedades espaciais Delta de dirac Esta função tem as seguintes propriedades: Sifting property

Comentários A primeira propriedade sugere um tipo de máscara infinitesimal que amostra a imagem precisamente na posição (x,y) A segunda propriedade é conhecida como Sifting property.

Funções especiais Dirac delta (x)=0,x 0 lim 0 - (x)dx = 1 Sifting property - f(x´) (x-x´)dx´=f(x) Scale (ax) = (x)/|a| Delta de Kronecker (n)=0, n 0 (n)=1, n=0 Sifting property m=- f(m) (n-m) =f(n)

Transformada de Fourier onde u,v é a freqüência espacial em ciclos por pixel, de modo que quando x é especificado em pixels, 2 (ux+vy) é em radianos, e i= -1

Pares transformados

Pares de transformadas

Propriedade: freqüência espacial Se f(x,y) é a luminância e x,y as coordenadas espaciais, então 1 e 2 (ou u,v) são as freqüências espaciais que representam a mudança de luminância com respeito às distâncias espaciais. As unidades 1 e 2 (ou u,v) são recíprocas de x e y respectivamente. Algumas vezes as coordenadas x,y são normalizadas pela distância de visualização da imagem f(x,y). Então as unidades 1 e 2 (u,v) são dadas em ciclos por grau (do ângulo de visualização), ou por pixel.

Propriedade: unicidade Para funções contínuas, f(x,y) e F( 1, 2 ) são únicas com respeito uma à outra. Não há perda de informação se for preservada a transformada ao invés da função

Propriedade: separabilidade O kernel da transformada de Fourier é separável, de modo que ela pode ser escrita como uma transformação separável em x e y. F( 1, 2 )= f(x,y)exp(-i2 x 1 )dx exp(-i2 y 2 )dy Isso significa que a transformação 2D pode ser realizada por uma sucessão de duas transformações unidimensionais, ao longo de cada uma das coordenadas.

Teorema do deslocamento De modo que

Convolução A convolução de duas funções f e g onde é uma variável de integração

Teorema da convolução então

Teorema da amostragem Seja F( )= transformada de Fourier de uma função f(t), com t (-,+ ). Assumimos que f é limitada em banda, isto é, F( )= 0, para | |> c >0. Então, podemos formular o teorema da amostragem.

Teorema da amostragem A função f pode ser reconstruída exatamente para todo t (-,+ ), a partir de uma seqüência de amostras eqüidistantes f n =f(n / c ), de acordo com a seguinte formula: f(t)= - f n sin( c t-n )/( c t-n ) = - f n sinc( c t-n )

Aliasing Uma função contínua no espaço f(x) é amostrada pelo cálculo do produto de f(x) por g(x), uma seqüência infinita de deltas de Dirac Queremos determinar os efeitos da função de amostragem na energia espectral em f(x)

Aliasing Pelo teorema da convolução, sabemos que o produto destas duas funções espaciais é igual à convolução dos seus pares de Fourier Podemos escrever a função H(u) em termos de F(u):

Aliasing

Deste modo, o espectro de freqüência da imagem amostrada consiste de duplicações do espectro da imagem original, distribuída a intervalos 1/x 0 de freqüência. Seja R(u) um filtro passa-banda no domínio da freqüência. 0 caso contrário

Aliasing Quando os espectros replicados interferem, a interferência introduz relativa energia em altas freqüências mudando a aparência do sinal reconstruído

Teorema da amostragem (nyquist) Se a imagem não contém componentes de freqüência maiores que a metade da freqüência de amostragem, então a imagem contínua pode ser representada fielmente ou completamente na imagem amostrada.