Conversão de Energia I Aula 5.4 Máquinas de Corrente Contínua

Slides:



Advertisements
Apresentações semelhantes
1º Aula – Prática de Acionamentos Eletrônicos
Advertisements

Prof. Guilherme G. Sotelo
Motor Trifásico de Indução Partidas Convencionais
GERADOR SÍNCRONO Geradores síncronos ou alternadores são máquinas síncronas usadas para converter potência mecânica em potência elétrica ASPECTOS CONSTRUTIVOS.
Circuito equivalente recomendado pelo IEEE
MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA
FUNDAMENTOS DE MÁQUINAS SÍNCRONAS 1. Máquina síncrona de campo fixo
MÁQUINAS ELÉTRICAS Máquina de Corrente Contínua - MOTOR DC
MÁQUINAS ELÉTRICAS Máquina de Corrente Contínua - MOTOR DC
MÁQUINAS ELÉTRICAS Máquina de Corrente Contínua Fundamentos Iniciais
MÁQUINAS ELÉTRICAS Máquina de Corrente Contínua - GERADOR DC
Circuitos Trifásicos A maior parte da geração, transmissão e utilização em alta potência da energia elétrica envolve sistemas polifásicos, ou seja, sistemas.
MÁQUINAS ELÉTRICAS Máquina de Corrente Contínua Fundamentos Iniciais
Motores de Relutância Possuem o estator (polifásico ou monofásico) semelhante ao motor de Indução. Motores de relutância sem gaiola necessitam de um conversor.
Máquinas Elétricas Unidade 02
Máquinas CC Máquinas corrente contínua Corrente eléctrica alternada
Prof. Marcelo de Oliveira Rosa
SISTEMAS DE CARGA E PARTIDA
Máquinas Elétricas I Aula 12
Máquinas Elétricas I Aula 14
Máquinas Elétricas I Prof.: Samuel Bettoni.
Motores Elétricos Hélio Padilha.
Máquinas CC Máquinas corrente contínua Corrente eléctrica alternada
TRANSFORMADORES.
TRANSFORMADORES.
Sístemas e Instalações Eléctricas de Navios
Máquinas Elétricas I – Aula 20
Máquinas Elétricas I Aula 13
MOTOR DE INDUÇÃO TRIFÁSICO
CONVERSÃO ELETROMECÂNICA DE ENERGIA
MOTORES SÍNCRONOS Marco Bartulihe nº
Vocês podem fazer sugestões ou retirar dúvidas também no
Comunicação Receptor Transmissor
Acionamentos Elétricos
Máquina CC.
Automação Industrial Máquinas Elétricas
Maquina Síncrona.
ENGENHARIA DE PRODUÇÃO INSTALAÇÕES INDUSTRIAIS Prof. Jorge Marques
Conversao de Energia II – N6CV2
Sistemas trifásicos Prof. Luis S. B. Marques MINISTÉRIO DA EDUCAÇÃO
Aula 06: Circuitos em série Prof. Diovani Milhorim
Máquinas Elétricas I Aula 5
Automação Industrial Máquinas Elétricas
Energia MecânicaEléctrica máquina eléctrica Motor Gerador Transformador Circuito eléctricoCircuito mecânico electromagnetismo Circuito eléctricoCircuito.
Técnicas Analíticas para Engenharia Elétrica
Geradores ELÉTRICOS.
Máquinas Elétricas I Aula 3
Parte 2 – Máquinas Elétricas
Transformador Real.
MOTORES DE INDUÇÃO TRIFÁSICOS
ELETRÔNICA E ELETRICIDADE BÁSICA
Máquinas Elétricas Eletrotécnica
INDUTORES – BOBINAS.
MOTOR ASSÍNCRONO OU DE INDUÇÃO TRIFÁSICO
Elementos básicos e Fasores
Transformadores monofásicos
Transformador Real.
Ensaio de curto-circuito e circuito aberto
INDUÇÃO MAGNÉTICA Faraday, baseando-se nos trabalhos de Oersted ( ) e Ampère, em meados de 1831, começou a investigar o efeito inverso do fenômeno.
Sistemas de Controle III N8SC3
ELETRICIDADE BÁSICA “CC” Etapa 2
Conversão de Energia I N5CV1 Prof. Dr. Cesar da Costa 4.a Aula: Gerador de Corrente Contínua.
Conversão de Energia I N5CV1
Conversão de Energia II – T6CV2
Conversão de Energia I N5CV1
Eletricidade Instrumental Indutores
Instituto Federal de Santa Catarina
Conversão de Energia I N5CV1
1. INTRODUÇÃO As máquinas de corrente contínua podem ser utilizadas tanto como motor quanto como gerador. Porém, uma vez que as fontes retificadoras.
Conversão de Energia I N5CV1
Transcrição da apresentação:

Conversão de Energia I Aula 5.4 Máquinas de Corrente Contínua Departamento de Engenharia Elétrica Conversão de Energia I Aula 5.4 Máquinas de Corrente Contínua Prof. Clodomiro Unsihuay Vila

Bibliografia Conversão de Energia I FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência. 6ª Edição, Bookman, 2006. Capítulo 7 – Máquinas CC KOSOW, I. Máquinas Elétricas e Transformadores. Editora Globo. 1986. Capítulo 3 – Relação de Tensão nas Máquinas CC – Geradores CC TORO, V. Del, MARTINS, O. A. Fundamentos de Máquinas Elétricas. LTC, 1999. Capítulo 7 – Geradores de Corrente Contínua; Bim, Edson. Máquinas Elétricas e Acionamento. Editora Elsevier, 2009. Capítulo 7 – Regime permanente de máquinas de corrente contínua Conversão de Energia I 2 2 2 2 2

Efeito da Fmm da armadura Quando a corrente de armadura é zero a corrente de campo estabelece o fluxo resultante na máquina. Conversão de Energia I

Efeito da Fmm da armadura Quando uma corrente circula pelo enrolamento de armadura, a distribuição original de fluxo na máquina é alterada. O fluxo produzido pela armadura se opõe ao fluxo produzido pelo enrolamento de campo em uma metade de pólo e se soma ao fluxo produzido pelo enrolamento de campo na outra metade deste mesmo pólo. Conversão de Energia I

Efeito da Fmm da armadura O fluxo produzido pela armadura se opõe ao fluxo produzido pelo enrolamento de campo em uma metade de pólo e se soma ao fluxo produzido pelo enrolamento de campo na outra metade deste mesmo pólo. Conversão de Energia I

Efeito da Fmm da armadura A densidade de fluxo resultante é a soma do fluxo gerado pelo enrolamento de campo e o produzido pelo enrolamento de armadura. Conversão de Energia I

Efeito da Fmm da armadura A soma dos fluxos não é linear devido ao efeito de saturação do material ferromagnético. O valor máximo de densidade de fluxo é atenuado pela saturação do material magnético. Conversão de Energia I

Efeito da Fmm da armadura Dessa forma a comutação entre as espiras não ocorre sob tensão nula, o que pode vir a danificar o gerador ou motor. A reação da armadura provoca um deslocamento do ponto de fluxo zero, além de distorcer a forma de onda do fluxo no entreferro. Conversão de Energia I

Comutação Conversão de Energia I Como ambas a Fmm de armadura e a tensão de reatância são proporcionais à corrente de armadura, o enrolamento de comutação (interpolo) deve ser conectado em série com o enrolamento de armadura. Conversão de Energia I

Comutação Conversão de Energia I Uma onda de fluxo muito distorcida pode induzir numa bobina tensões elevadas devido a rápida variação do fluxo distorcido. A tensão na bobina pode se tornar suficientemente elevada para romper o ar entre as lâminas vizinhas do comutador, resultado em um arco elétrico entre elas. Devido a presença do plasma que conduz a corrente de armadura do comutador até as escovas, a tensão de ruptura não é elevada porque o ar próximo ao comutador está em condições favoráveis a ruptura. A máxima tensão permitida entre as lâminas é da ordem de 30 a 40 [V]. Conversão de Energia I

Comutação Conversão de Energia I Essa elevada distorção no fluxo ocorre com máquinas funcionando com sobrecarga elevadas, cargas rapidamente variáveis ou campo principal fraco. Um arco entre as lâminas pode se espalhar rapidamente por todo comutador e, além de seus possíveis efeitos destrutivos sobre o comutador, representa um curto-circuito direto para a linha de alimentação. Conversão de Energia I

Comutação Conversão de Energia I Esse efeito pode ser consideravelmente abrandado pela compensação ou neutralização da Fmm de armadura debaixo das faces polares. Tal compensação pode ser conseguida por meio de um enrolamento de compensação ou de face polar alojado em ranhuras presentes na face do pólo e com uma face oposta à do enrolamento de armadura vizinho. Conversão de Energia I

Comutação Conversão de Energia I O enrolamento de campo de compensação também deve conduzir a corrente de armadura, visto que a reação de armadura aumenta com a carga (corrente de armadura). Conversão de Energia I

Comutação Conversão de Energia I Dispositivos presentes para melhorar a comutação e evitar sobre tensão na bobina. Conversão de Energia I

Operação das máquinas CC Variação da tensão terminal do gerador em função da corrente de carga. Gerador com excitação independente Tensão terminal do gerador em função da corrente de carga Conversão de Energia I

Exercício 1 (If = 1,46 [A]) Conversão de Energia I Um gerador CC em condições nominais fornece uma corrente de armadura de 120 [A] quando operando em 1000 [rpm]. Esse gerador tem uma resistência de armadura Ra=0,1[Ω], a resistência do enrolamento de campo Rfw=80 [Ω], e Nf = 1200 espiras por pólo. A corrente de campo nominal é 1 [A]. As características de magnetização para 1000 [rpm] é apresentada abaixo. A máquina está operando com excitação de campo independente, sendo a velocidade de rotação do gerador CC de 1000 [rpm]. a) Negligenciando a reação de armadura. Determine a tensão terminal para corrente nominal; (Vt = 88 [V]) b) Considerando que a reação de armadura para carga nominal é equivalente 0,06 ampères da corrente de campo. b.1) Determine a tensão terminal quando operando com corrente nominal; (Vt = 86 [V]) b.2) Determine a corrente de campo requerida para produzir uma tensão terminal de 100 [V], quando operando com corrente nominal. (If = 1,46 [A]) Obs. Considerar condições nominais aplicadas a armadura. Conversão de Energia I

Exercício 1 Conversão de Energia I