Germano Maioli Penello

Slides:



Advertisements
Apresentações semelhantes
Prática de Acionamentos Eletrônicos – PAE_04
Advertisements

Os inversores são circuitos estáticos (não tem partes móveis) que convertem potência DC em potência AC com frequência e tensão ou corrente de saída desejada.
Comportamento de um transistor MOS - NMOS
Eletrônica de Potência
12 Modelos doTransistor MOS Concepção de Circuitos Integrados
IE733 – Prof. Jacobus Cap. 5 Transistores MOS com canal implantado.
IE733 – Prof. Jacobus 13 a Aula Cap. 4 A Estrutura MOS de Quatro Terminais (parte 3)
2.1 Introdução MOSFET = dispositivo predominante da microeletrônica moderna MOS = Metal – Óxido (SiO2) – Semicondutor (Si) MIS = Metal – Isolante – Semicondutor.
CCS - Centro de Componentes Semicondutores
IE733 – Prof. Jacobus 11a Aula Cap
IE733 – Prof. Jacobus 12 a Aula Cap. 4 A Estrutura MOS de Quatro Terminais (parte 2)
IE327 – Prof. Jacobus Cap. 8 Modelagem de Pequeno Sinal para Baixas e Médias Freqüências (parte 2)
CAPÍTULO 5 MODELAGEM DE COMPONENTES ATIVOS EM RF
Carlos Edson Flávio Jorge Luciano Rafael Welinton
Carlos Edson Flávio Jorge Luciano Rafael Welinton
Transistor de Efeito de Campo MOS (MOSFET) – Parte I
Prof. Marcelo de Oliveira Rosa
PSI 2223 – Introdução à Eletrônica Programação para a Terceira Prova
PSI 2223 – Introdução à Eletrônica Programação para a Terceira Prova
Transistor de Efeito de Campo MOS (MOSFET) – Parte III
Transistor de Efeito de Campo MOS (MOSFET) – Parte II
Circuitos Integrados Digitais ELT017
Eletricidade Aula 13.
Circuitos Integrados Digitais ELT017
Fatec SBC Automação Industrial Prof Rômulo
Circuitos Integrados Digitais ELT017
Germano Maioli Penello
Germano Maioli Penello
UERJ – FEN – DETEL Primeira prova de Eletrônica II /01 – Turmas 3 e 4
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Circuitos Integrados Digitais ELT017
Germano Maioli Penello
RD vgs VGS UERJ – FEN – DETEL
Germano Maioli Penello
Germano Maioli Penello
UERJ – FEN – DETEL Segunda prova de Eletrônica II /01 – Turmas 3 e 4
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
11 Microeletrônica Germano Maioli Penello Sala 5145 (sala 17 do laboratorio de engenharia.
Germano Maioli Penello
Germano Maioli Penello
1 Eletrônica II Germano Maioli Penello Aula 05 II_ html.
1 Eletrônica II Germano Maioli Penello Aula 06 II _ html.
Germano Maioli Penello
Germano Maioli Penello
11 Microeletrônica Germano Maioli Penello Sala 5145 (sala 17 do laboratorio de engenharia.
11 Microeletrônica Germano Maioli Penello Sala 5145 (sala 17 do laboratorio de engenharia.
11 Microeletrônica Germano Maioli Penello Sala 5145 (sala 17 do laboratorio de engenharia.
Germano Maioli Penello
Germano Maioli Penello
1 11 Eletrônica II Germano Maioli Penello II _ html Aula 15.
Germano Maioli Penello
Germano Maioli Penello
1 1 Eletrônica II Germano Maioli Penello II _ html Aula 20.
11 Eletrônica II Germano Maioli Penello II _ html Aula 12.
Germano Maioli Penello
Eletrônica Aula 04 CIN-UPPE
11 Microeletrônica Germano Maioli Penello Sala 5145 (sala 17 do laboratorio de engenharia.
1 Eletrônica II Germano Maioli Penello II _ html Aula 17.
Famílias Lógicas: CMOS, TTL – Tensões como Variáveis Lógicas
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Transcrição da apresentação:

Germano Maioli Penello Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/Microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) Aula 16 1

MOSFET Capacitância parasítica de depleção de fonte e dreno Modelo SPICE: Não confundir capacitância de depleção (polarização reversa) com capacitância de difusão (polarização direta)!

MOSFET Resistência parasítica de fonte e dreno O comprimento da região ativa aumenta a resistência parasítica em série com o MOSFET, determinada pelo número de quadrados na fonte (NRS) e dreno (NSD) NRS = comprimento da fonte / largura da fonte Resistência de folha incluída no modelo SPICE como srh (confira o valor no processo C5)

MOSFET Capacitância parasítica As capacitância parasíticas dependem da área da regíão ativa. Num desenho com números pares de capacitores, a região ativa de um terminal é maior que a do outro. Neste desenho, a área do S é maior que a do D.

MOSFET Capacitância parasítica Para obter boa resposta a altas frequências, é desejado que a capacitância maior seja aterrada (para NMOS) ou conectada ao VDD (PMOS) Menor capacitância Maior capacitância A menor capacitância descarrega pelos dois capacitores (maior resistência no caminho de descarga) enquanto a maior capacitância não carrega nem descarrega.

MOSFET Capacitância parasítica Dispositivo operando na região de inversão forte (strong inversion region) Canal formado entre o dreno e a fonte Capacitância não depende da extensão da difusão lateral

MOSFET Capacitância parasítica Dispositivo operando na região de depleção. Não há canal entre o dreno e fonte. Capacitância depende da extensão da difusão lateral Os parâmetros CGDO (gate-drain overlap capacitance) e CGSO são estipulados no modelo SPICE. Confira os valores no modelo do processo C5.

MOSFET Capacitância parasítica Os modelos do MOSFET devem incluir capacitâncias entre seus terminais e que essas capacitâncias dependem da região de operação do MOSFET. Quantos transistores temos nesta imagem? Imagem SEM

Modelos para projetos digitais Após ver alguns detalhes da fabricação dos MOSFETs, agora veremos modelos que utilizaremos em designs digitais De uma forma simples, o MOSFET é analisado em projetos digitais como uma chave logicamente controlada.

Modelos para projetos digitais Um dos pontos importantes em um circuito digital é o tempo de resposta do MOSFET. Para determinar o tempo de resposta, temos que associar ao MOSFET uma capacitância e uma resistência. Efeito Miller Considere o seguinte circuito: Inicialmente: Vin = VDD e Vout = 0 Se as tensões mudarem: Vin = 0 e Vout = VDD

Modelos para projetos digitais Efeito Miller Considere o seguinte circuito: Inicialmente: Vin = VDD e Vout = 0 Se as tensões mudarem: Vin = 0 e Vout = VDD A carga final fornecida é

Modelos para projetos digitais Efeito Miller Neste exemplo, a capacitância vista pela fonte de entrada e de saída é o dobro da capacitância conectada entre a entrada e a saída Usaremos este resultado para construir um modelo de MOSFET para análise digital.

Modelo de MOSFET digital Resistência de chaveamento efetiva Inicialmente o MOSFET está desligado (VGS = 0) e o dreno está em VDD. Aplicando instantaneamente uma tensão VDD na porta a corrente ID que flui inicialmente é:

Modelo de MOSFET digital Resistência de chaveamento efetiva Como estimar uma resistência para este resultado?

Modelo de MOSFET digital Resistência de chaveamento efetiva Como estimar uma resistência para este resultado? Inverso da inclinação da reta

Modelo de MOSFET digital Resistência de chaveamento efetiva Modelo inicial para um MOSFET chaveando Limitação desse modelo: Consideração feita que o tempo de subida e de descida é zero. O ponto que define a chave aberta e fechada é bem definido. Usado para cálculo a mão, apresentam resultados dentro de um fator de dois do resultado obtido por simulação ou pela experiência.

Modelo de MOSFET digital Resistência de chaveamento efetiva O modelo feito aqui não inclui a redução da mobilidade observada em dispositivos submicron. Um melhor resultado é obtido através de valores medidos ou simulados: NMOS de canal longo (fator de escala de 1 mm e VDD = 5V) PMOS de canal longo (fator de escala de 1 mm e VDD = 5V) mobilidade do elétron é maior que a do buraco

Modelo de MOSFET digital Resistência de chaveamento efetiva MOSFETs de canal curto não seguem a lei quadrática para a corrente! Usamos a corrente Ion para estimar a resistência NMOS de canal curto PMOS de canal longo

Modelo de MOSFET digital Resistência de chaveamento efetiva MOSFETs de canal curto não seguem a lei quadrática para a corrente! Usamos a corrente Ion para estimar a resistência NMOS de canal curto (fator de escala de 50 nm e VDD =1V) PMOS de canal longo (fator de escala de 1 mm) Equações reescritas para incluir L

Modelo de MOSFET digital Efeitos Capacitivos Adicionando efeitos das capacitâncias no modelo Cox é a capacitância na região de triodo (superestimado para facilitar as contas à mão – cálculo melhor é feito com simulações) Capacitância é vista como 2(Cox/2) = Cox

Modelo de MOSFET digital Efeitos Capacitivos Adicionando efeitos das capacitâncias no modelo Modelo melhorado

Modelo de MOSFET digital Constante de tempo Qual é a velocidade de chaveamento do MOSFET? Constante de tempo tn = RnCox Canal longo: Mais lento - quadraticamente com L Independente de W Mais rápido para VDD maior Canal curto: Mais lento linearmente com L Independente de W Mais lento para VDD maior

Modelo de MOSFET digital Resumo

Tempo de transição e de atraso Relembrando

Tempo de transição e de atraso Tempo de subida - tr Tempo de subida da saída- tLH Tempo de descida- tf Tempo de descida da saída- tHL Tempo de atraso low to high - tPLH Tempo de atraso high to low - tPHL

Tempo de transição e de atraso No nosso modelo digital: Ctot = capacitância total entre o dreno e o terra. Modelo simplificado para ser usado no cálculo a mão apenas!

Exemplo Descarga Carga

Exemplo Descarga Carga Canal longo Canal curto

Exemplo Descarga Carga

Exemplo Simulação

Projeto digital Por que NMOS e PMOS têm tamanhos diferentes?

Projeto digital Por que NMOS e PMOS têm tamanhos diferentes? Casamento da resistência de chaveamento efetiva