EN3624 – Sistemas de Micro-ondas Linhas de Transmissão em Micro-ondas

Slides:



Advertisements
Apresentações semelhantes
Prof. Marcelo Sant’Anna Sala A-310 (LaCAM)
Advertisements

LINHAS DE MICROFITA.
Redes de computadores Meios de transmissão.
Redes de computadores I
Redes de computadores: Meios de Transmissão
Aula 2 – Conceitos Fundamentais I
Sistema de Radiodifusão de Televisão
APLICAÇÕES EM INSTALAÇÕES ELÉTRICAS
Características Elétricas de Circuitos de Linha.
Modelos no Domínio do Tempo de Sistemas LTI Contínuos
ONDAS ELETROMAGNÉTICAS
EFICIÊNCIA DE RADIAÇÃO
Transformador ideal i2 i1 N1: número de espiras do primário
CF096 Física Básica Teórica V Prof. Dante Mosca
Física III Eletrostática
2. Linhas de Transmissão.
Capítulo 5 Antenas de Abertura
Apresentação PowerPoint
Meios físicos de Transmissão de Dados
Meios físicos de transmissão
Prof. Djamel Sadok Assistentes: Rafael Aschoff Breno Jacinto
Trabalho realizado por: Christophe do Real Nº8
Tecnológicas de Mídias Digitais André Santos Silva Rodrigo T2B1 Redes
Capítulo 7 Antenas Diversas
Energia As ondas electromagnéticas transportam energia electromagnética Meios simples ε, μ, σ não variam no tempo V ^ n ~ Sf Energia armazenada nos campos.
FO - Parâmetros normalizados
Gama de frequências/comprimentos de onda das Fibras Ópticas
TRANSFORMADORES.
Equação da onda em uma dimensão
Unidade 2 – Onda Plana Uniforme
UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ONDAS E LINHAS ELETROMAGNÉTICAS RELAÇÕES.
REDE DE COMPUTADORES.
Cablagem.
Comunicações Ópticas em Transmissão de Dados
Equações de Maxwell Prof. Luis S. B. Marques
Aula 04: Tipos de resistores – código de cores
TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA
Transformadores Prof. Luis S. B. Marques.
Processo de Radiação A problemática do estudo de antenas consiste em calcular o Campo Elétrico e o Campo Magnético no espaço provocado pela estrutura da.
AMPLIFICADORES OPERACIONAIS
FENÔMENOS DE TRANSPORTE
FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO
Processo de Radiação A problemática do estudo de antenas consiste em calcular o Campo Elétrico e o Campo Magnético no espaço provocado pela estrutura da.
Redes sem fio Fundamentos de Rádio Frequência
Introdução a Redes de Computadores Cabeamento
1PROE1S0708 CFAula Conceitos Fundamentais – Aula 3.
Princípios de Comunicação Conceitos de FM (2ª. Parte)
Características gerais das ondas que se propagam em estruturas com secção transversal uniforme. x z y ε 1, μ ε 1, μ 1 ε 2, μ 2 diel. 1 diel. 2.
Redes I: Meios de Transmissão
Linhas de transmissão.
Conceitos Fundamentais I
Física Experimental III – aula 6
1 Guia rectagular y z x b a a > b Modos TE mn, TM mn Indíce m – nº de meios ciclos do campo e.m. na direcção xx Indíce n – nº de meios ciclos do campo.
Características gerais das ondas que se propagam em estruturas com secção transversal uniforme. x z y ε 1, μ ε 1, μ 1 ε 2, μ 2 diel. 1 diel. 2.
Capítulo 7 Linhas de Transmissão
Capítulo 6 Ondas Guiadas
PROE1S0708 CFIAula Conceitos Fundamentais – Aula 2.
Professor: Marivaldo Mendonça
Capítulo 3 Antenas.
Elementos básicos e Fasores
2.2 Comunicação de informação a longas distâncias
Reflexão e Transmissão de Ondas em Interfaces Dielétricas Planas
Conceitos Fundamentais I
Capítulo 5 Onda Plana Uniforme
Gama de frequências/comprimentos de onda das Fibras Ópticas.
Sistemas de Controle III N8SC3
Fundamentos de Redes Meios ligados: Cobre Fibra Óptica
PROE 1S0607 CFI Aula Formalismo da onda plana e uniforme em espaço livre Trata-se de uma estrutura TEM (campos ortogonais à direcção de propagação.
Robert L. Boylestad Introductory Circuit Analysis, 8ed. Copyright ©1997 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
Transcrição da apresentação:

EN3624 – Sistemas de Micro-ondas Linhas de Transmissão em Micro-ondas

Tipos de Linhas de Transmissão em Micro-ondas 2 ou mais condutores: Cabos coaxiais → modo TEM (transversal eletromagnético) Microlinha → modo quase-TEM Linha em fita Linha coplanar Condutor único: Guias de onda → retangulares e cilíndricos modos TE e TM (transversal elétrico /transversal magnético)

Comparação- Linhas de Transmissão em Micro-ondas http://www.ittc.ku.edu/~jstiles/723/handouts/chapter_3_Transmission_Lines_and_Waveguides_package.pdf

Cabo Coaxial [H/m] [F/m] Indutância distribuída dielétrico (permissividade ; permeabilidade ) condutor externo (malha de blindagem) (raio b) protetor plástico externo condutor central (raio a) Capacitância distribuída [F/m] http://en.wikipedia.org/wiki/Coaxial_cable

Cabo Coaxial Z0 independe do comprimento do cabo e da frequência Impedância característica (perdas desprezíveis) Z0 independe do comprimento do cabo e da frequência Valores de b/a razoáveis → Z0 ~ 50-200 W Nomenclatura RG-6/U Z0 = 75  aplicação: sistemas residenciais RG58 Z0 = 52  aplicação: redes Ethernet

Medida de impedância característica de cabo coaxial Medidor RLC Terminação em aberto Terminação em curto Hipóteses: cabo sem perdas comprimento l nos dois casos

Perdas em Cabo Coaxial [/m] [m] [S/m] Resistência dos condutores c – condutividade do condutor  = r.0 – permeabilidade do condutor Hipótese: espessura do condutor maior que a profundidade de penetração s Efeito pelicular em condutor [m] Condutância do dielétrico [S/m] d – condutividade do dielétrico http://tymkrs.tumblr.com/post/5102845277/24-coaxial-cable-part-ii-ham-lesson-o-de-day

Características do material dielétrico Permissividade dielétrica (complexa) parte real da permissividade parte imaginária da permissividade: leva em conta as perdas por polarização do dielétrico mede a eficiência da conversão de micro-ondas em calor Tangente de perdas vale para dielétricos de baixas perdas (tg<<1) é função da frequência

Perdas em materiais dielétricos tg  multiplicada por 104 Temperatura do gelo: -12oC Temperatura dos outros materiais: 25oC https://eprints.usq.edu.au/2390/1/Ku_Siores_Ball_Publ_version.pdf

Influência da frequência nas Perdas em Cabo Coaxial Para baixas frequências→ perdas nos condutores (devido ao efeito pelicular) são dominantes. Para altas frequências dominam as perdas no dielétrico http://www.maximintegrated.com/app-notes/index.mvp/id/4303

Características da Propagação TEM em cabo coaxial Fator de propagação Constante de fase Constante de atenuação (baixas perdas) Velocidade de propagação (sem perdas, dielétrico não magnético) c=3.108 m/s

Propagação TEM em cabo coaxial direção de propagação /2 TEM – modo transversal eletromagnético → campo elétrico e magnético são perpendiculares entre si e não contêm componentes na direção de propagação. Campo → radial . Magnitude variável periodicamente na direção longitudinal, de acordo com  Campo → linhas circulares entre o condutor interno e o externo http://physwiki.apps01.yorku.ca/index.php?title=Main_Page/PHYS_4210/Coaxial_Cable

Distribuição de tensão e corrente em cabo coaxial Estrutura blindada → campo elétrico externo é nulo http://examcrazy.com/Engineering/Electronics-Communication/Telegrapher_Equations_For_Transmission_Lines.asp

Cálculos dos modos de propagação em linhas de transmissão Equações de Maxwell Estruturas uniformes em um dos eixos ao longo do qual ocorre a propagação das ondas EM (Ex: eixo z, dependência em e-jz) Campos elétrico e magnético harmônicos (senoidais→ dependência em ejt) transversais entre si Não há densidade de carga (=0) Aplicação das condições de contorno (valores dos campos vetoriais nas interfaces entre diferentes materiais dielétricos e condutores) Modo TEM → Ez=Hz=0 existe quando há dois ou mais condutores, a partir de frequência nula (DC). Modos TE → Ez=0; Hz≠0 e Modos TM→ Ez≠0; Hz=0 ocorrem em guia condutor fechado e também com dois ou mais condutores, a partir da frequência de corte correspondente.

Modos de ordem superior em linhas de transmissão - Analogia direção de propagação Grãos de arroz injetados num tubo com seção transversal da ordem de grandeza da dimensão dos grãos (modo único de propagação) Aumentando-se a dimensão do tubo ou diminuindo-se a dimensão dos grãos de arroz → a propagação pode ocorrer em diferentes modos e com velocidades diferentes. (modos de ordem superior ocorrem conforme a frequência aumenta, isto é, quando o comprimento de onda se torna menor que as dimensões da estrutura da linha de transmissão)

Modos de ordem superior em cabo coaxial http://uspas.fnal.gov/materials/MicrowaveTheory.pdf

Limite de frequência para propagação única do modo TEM Modo TE11 → aparece quando o comprimento de onda é igual ao comprimento da circunferência média do cabo: Modo TEM Máxima frequência de operação do coaxial Modo TE11 http://www.microwavejournal.com/articles/3205-new-dielectric-bead-for-millimeter-wave-coaxial-components

Conectores coaxiais Tipo N – dielétrico: PTFE SMA – dielétrico: PTFE,  = 4,2mm APC7 – dielétrico: PTFE, =7mm K – dielétrico: ar, =2,92mm http://www.microwaves101.com/encyclopedia/connectors.cfm

Conectores coaxiais Diminuição do diâmetro interno do conector (a) → aumento da frequência de corte do modo TE11 http://www.microwaves101.com/encyclopedia/coax.cfm

Microlinha (microstrip line) fita metálica Materiais condutores: cobre, alumínio, ouro Materiais dielétricos (substrato): alumina, PTFE, quartzo, resina cerâmica, fibra de vidro, Si, GaAs dielétrico plano terra Fabricação através de fotolitografia (PCB) Facilmente integráveis com componentes e CIs (estrutura planar) Baixo custo Plano terra provê blindagem de radiação http://mcalc.sourceforge.net/

Exemplos de Circuitos em Microlinha Filtros Amplificador Misturador

Componentes em Microlinha Indutor espiral Capacitor interdigital Circuito LC

Propagação de campos em Microlinha Propagação dos campos em meio não homogêneo Dispersão das linhas de campo elétrico e valor de ef dependem de W, H e W/H Modelagem: modo quase-TEM em meio contínuo com permissividade efetiva ef< r ar (r=1) ar (r=1) dielétrico Plano imagem Modelo bifilar http://www.pcbdesign007.com/pages/columns.cgi?clmid=55&artid=76489&_pf_=1

Constante dielétrica efetiva ef ar (r=1) dielétrico (r>1) H microlinha plano terra W dielétrico (1<ef< r) W microlinha H plano terra http://www.madmadscientist.com/html/Theory.htm

Características das Microlinhas Velocidade de propagação Constante de fase Comprimento de onda Comprimento elétrico

Características das Microlinhas (equações semi empíricas e métodos numéricos) Constante dielétrica efetiva Hipótese: Tmet0 Impedância característica para W/H 1 para W/H>1 Cálculos para projeto de linhas de transmissão micro-ondas(aplicativo TXLINE) http://www.awrcorp.com/products/optional-products/tx-line-transmission-line-calculator

Microlinhas – Exemplo 1 Dielétrico: Alumina (Al2O3) r = 9,9 H= 0,524 mm Para Z0=50 , =10o: W= 0,499 mm X= 3,25 mm ef = 6,584 Software: ADS (LineCalc) : Síntese e Análise de Microlinhas

Microlinhas – Exemplo 1 H Dielétrico: FR-4 (fibra de vidro com resina epoxy) r = 4,3 H= 0,524 mm Para Z0=50 , =10o: W= 1,014 mm X= 4,612 mm ef = 3,259 Software: ADS (LineCalc) : Síntese e Análise de Microlinhas

Limite de operação das microlinhas Fatores de limitação: Perdas Dispersão (variação dos parâmetros Z0 e ef com a frequência) Excitação de outros modos de propagação (TE ou TM) para W<2H

Efeitos de dispersão em microlinhas Variação de Z0 com a frequência Variação do ef com a frequência http://www.ecse.rpi.edu/frisc/theses/LWangThesis-MS/LWangThesis.htm

Atenuação e perdas em microlinhas c – atenuação no condutor d – atenuação no dielétrico r – atenuação por irradiação (frequências elevadas) Rs = resistência de efeito pelicular no condutor s = profundidade de penetração no condutor [m] tg = tangente de perdas do dielétrico Wentworth,S.M. Eletromagnetismo Aplicado, Cap. 10, Bookman, 2007

Transição coaxial-microlinha pino central soldado à microlinha Condutor externo soldado ao plano de terra da microlinha Caixa metálica para acondicionamento do circuito em microlinha Flange pode ter 2 ou 4 furos de fixação

Medida experimental de ef Ressoador simples com comprimento /4 Aberto → Curto na frequência f0

Medida experimental de (ef x f) Ressoador em anel, acoplado à microlinha para n = 1, 2, 3… R= raio médio do anel λ g = comprimento de onda das ressonâncias

Linha em Fita (stripline) Vantagens: meio de propagação homogêneo: modo TEM e parâmetros não dispersivos; boa blindagem Dificuldades práticas: contato entre os planos terra para que estejam no mesmo potencial; conexão de componentes; método de fabricação; linhas de transmissão mais finas Aplicações: acopladores direcionais e filtros http://www.atlantarf.com/Stripline.php

Exemplos de circuitos em Linha em Fita

Propagação de campos em Linha de Fita Modo TEM Perdas dependem do condutor e do dielétrico Modos de ordem superior e ressonâncias transversais (TE) podem ser excitados para frequências acima de:

Parâmetros das Linhas de Fita Impedância característica

Linha Coplanar (CPW ou CPWG) Vantagens: linha de e de terra estão no mesmo lado do substrato facilidade de conexão de componentes mesma impedância característica pode ser obtida com larguras de linha diferentes plano terra no outro lado do substrato provê maior blindagem facilidade de acesso com pontas de prova do tipo CPW Baixa radiação e baixa dispersão GND (só existe para CPWG) Dificuldades práticas: ocupação de grande área do substrato Aplicações: circuitos MMICs (circuitos monolíticos de micro-ondas); circuitos para ondas milimétricas; antenas e redes de antenas http://wcalc.sourceforge.net/cgi-bin/coplanar.cgi

Exemplos de circuitos em Linha Coplanar Amplificador de baixo ruído Combinador de potência Oscilador http://post.queensu.ca/~freund/research/wireless/wirelessf.html http://www.microwavejournal.com/articles/2404-the-current-state-of-the-art-in-coplanar-mmics

Propagação de campos em Linha Coplanar parede magnética ( perpendicular) Modo Coplanar (ou modo ímpar)→ quase-TEM (desejável; baixa radiação) Campos nas fendas estão defasados de 180o E H Modo de fenda acoplada (ou modo par)→ (indesejável) Campos nas fendas estão em fase Pode ser evitado conectando-se as linhas de terra: fios de conexão parede elétrica ( perpendicular)

Parâmetros das Linhas Coplanares Impedância característica → depende da relação S/W e não tanto de H (infinitas possibilidades para o mesmo valor de impedância) r Linha CPW com Z0 constante= 50  e S/W variável Constante dielétrica efetiva → menor que r , pois os campos concentram-se no dielétrico e no ar. Facilidade para conexão de componentes CPWG

Teste de circuitos monolíticos: ponta de prova coplanar CPW microlinha transição Equipamento Cascade https://www.cmicro.com/products

Linha de fenda (slot line) Impedância característica depende de W (largura da fenda) Estrutura balanceada E H Modo de propagação não TEM (maior componente do campo elétrico orientada perpendicular à fenda, no plano de metalização) http://www.artechhouse.com/static/sample/Bahl-535_CH05.pdf

Aplicações de Linha de fenda Incluídas em circuitos de microlinhas (no plano terra) → circuitos híbridos dupla face acoplador direcional Antenas (operação em banda larga de frequência) antena vivaldi (em linha de fenda) com alimentação em microlinha JBAP, V.2, N.3, Agosto 2013, pp.159-167 http://mwrf.com/markets/design-x-band-vivaldi-antenna

Guias de Onda Metálicos Estruturas com condutor único Modos de propagação não TEM: TE – Transversal Elétrico (componente de campo magnético na direção de propagação) TM – Transversal Magnético (componente de campo elétrico na direção de propagação) Aplicações de micro-ondas de alta potência (1-40GHz) e em ondas milimétricas Faixa de frequências limitada Propagação a partir de uma frequência de corte Dimensões da ordem de grandeza do comprimento de onda guiado Metálicos direção de propagação

Guias de Onda Dielétricos Estruturas com materiais dielétricos Modos de propagação: TE, TM e híbridos (EH e HE) Aplicações de micro-ondas de alta frequência (baixa atenuação) Fibras ópticas: bom isolamento de sinal e banda extra larga r placa dielétrica r1 r2 fibra óptica

Guias de Onda Retangulares Material: latão, cobre ou alumínio a > b Modos TEmn e THmn m = variações de meia comprimento de onda na direção x n = variações de meia comprimento de onda na direção y Modo dominante: TE10 Frequência de corte

Guia de Onda Retangular Modo TE10 Guia de Onda Retangular Distribuição dos campos EM http://www.rfcafe.com/references/electrical/waveguide.htm

Guia de onda retangular - Distribuição das frequências de corte b/a fc b

Modos de propagação - Guias de Onda Retangulares http://uspas.fnal.gov/materials/MicrowaveTheory.pdf

Guias de Onda Cilíndricos Soluções para os campos EM→ coordenadas cilíndricas e funções de Bessel Modo dominante: TE11 Modos TE Modos TM são as raízes das funções de Bessel de 1ª espécie e as raízes das derivadas destas funções

Modos de Propagação- Guias de Onda Cilíndricos http://uspas.fnal.gov/materials/MicrowaveTheory.pdf

Transições entre linhas de transmissão http://www.atic.nsu.ru/lpimti/sites/default/files/ch_02.5_wg_transitions13.pdf campos simétricos campos não simétricos Adaptação dos campos eletromagnéticos http://www.atic.nsu.ru/lpimti/sites/default/files/ch_02.5_wg_transitions13.pdf

Transições em guias de onda Guia-coaxial http://www.radiometer-physics.de/rpg/html/Products_Components_Waveguide_Coax-to-Rectangle.html http://www.microwaves101.com/content/Waveguide_to_coax_transitions.cfm

Transições em guias de onda Guia-coaxial http://www.atic.nsu.ru/lpimti/sites/default/files/ch_02.5_wg_transitions13.pdf

Transições em guias de onda Guia-microlinha http://www.atic.nsu.ru/lpimti/sites/default/files/ch_02.5_wg_transitions13.pdf