A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Unidade 4 – Metabolismo de Carboidratos. Introdução AldosesCetoses Trioses (C 3 H 6 O 3 )GliceraldeídoDihidroxiacetona Tetroses (C 4 H 8 O 4 )EritroseEritrulose.

Apresentações semelhantes


Apresentação em tema: "Unidade 4 – Metabolismo de Carboidratos. Introdução AldosesCetoses Trioses (C 3 H 6 O 3 )GliceraldeídoDihidroxiacetona Tetroses (C 4 H 8 O 4 )EritroseEritrulose."— Transcrição da apresentação:

1 Unidade 4 – Metabolismo de Carboidratos

2 Introdução AldosesCetoses Trioses (C 3 H 6 O 3 )GliceraldeídoDihidroxiacetona Tetroses (C 4 H 8 O 4 )EritroseEritrulose Pentoses (C 5 H 10 O 5 )XiloseXilulose RiboseRibulose Arabinose- Hexoses (C 6 H 12 O 6 )GlicoseFrutose GalactoseSorbose Manose- Heptoses (C 7 H 14 O 7 )-Sedoheptulose Carboidratos (C, H, O) = nutrientes mais abundantes na natureza e representam a fonte primária de energia para os organismos vivos  Solúveis (Extrativo Não Nitrogenado) Monossacarídeos

3 Dissacarídeos Sacarose (  -d-glicose 1-5  -d-frutose) Lactose (  -d-galactose 1-4  -d-glicose) Maltose (  -d-glicose 1-4  -d-glicose) Celobiose (  -d-glicose 1-4  -d-glicose) Trissacarídeos Rafinose (frutose-glicose-galactose) Polissacarídeos Amido (amilose, amilopectina) Glicogênio Polissacarídeos não amiláceos solúveis - PNAS (arabinoxilanos, galactomananos, galactoglucomananos e galactoglucanos)

4  Insolúveis FDN - Fibra detergente neutro (celulose + hemi-celulose + lignina) FDA - Fibra detergente ácido (celulose + lignina)

5 Celulose : Polissacarídeo linear formado por moléculas de glicose unidas entre si por ligação ß1,4  Monômeros ligados por ligações ß1  4 Monogástricos não produzem enzimas capazes de hidrolisar Enzimas dos microrganismos Digestão microbiana nos cecos e cólon

6 Amido  reserva energética dos vegetais Amilose  cadeia linear. Ligações  (1  4) Amilopectina  cadeia ramificada. Ligações  (1  4) e  (1  6)

7 Glicogênio  reserva de energia dos animais Ramificações: ligações  (1  4) e  (1  6) Celulose  parede celular das células vegetais Cadeia linear de glicose: ligações  (1  4)  enzimas dos animais vertebrados não hidrolisam  fermentação microbiana

8 PAREDE CELULAR CONTEÚDO CELULAR CELULOSE HEMICELULOSE LIGNINA PECTINA FIBRA DETERGENTE NEUTRO (Van Soest & Moore, 1965) AMIDO AÇÚCARES PROTEÍNAS LIPÍDIOS SAIS MINERAIS ÁCIDOS NUCLÉICOS

9 TipoNomeFonte MONOSSACARÍDEOS Trioses (C 3 H 6 O 3 ) Dihidroxiacetona Gliceraldeído Produtos de fermentação e da glicólise. Pentoses (C 5 H 10 O 6 )Arabinose Xilose Ribose Hidrólises e arabanos Hidrólises de xilanos Ácidos nucléicos Hexoses (C 6 H 12 O 6 )Glicose Manose Galactose Frutose Hidrólise de amino, glicogênio, e maltose. Suco de frutas Leite (hidrólise de lactose) e galactosídeos. Hidrólise de sacarose DISSACARÍDEOS (C 12 H 22 0 12 ) Sacarose Maltose Trealose Lactose Açúcar de cana, beterraba, etc Amido Cogumelo Leite TRISSACARÍDEOS (C 18 H 32 O 18 ) Rafinose Gossipose Suco de beterraba Semente de algodão POLISSACARÍDEOS – grupos compostos de cadeias longas de sacarídeos. Amido, glicogênio, celulose, dextrose, pectinas, galactosídeos, entre outras.

10 DIGESTÃO RUMINANTES Digestão Microbiana Digestão Enzimática Digestão Microbiana NÃO RUMINANTES X

11 BOCA AMIDO SACAROSE LACTOSE CELULOSE ESTÔMAGO AMIDO INTESTINO DELGADO AMIDO FRUTOSE GALACTOSE CELOBIOSE Amilose maltose maltotriose maltose Amilopectina Dextrina GLICOSE Na Amilase Amilase (PAN) Sacarase (ID) Lactase (ID)

12 - Cotransporte ativo sódio dependente SGLT1 (Sodium dependent GLucose Transporter 1) – Transporta a glicose do lúmen intestinal para dentro do enterócito - Cotransporte ativo sódio dependente GLUT1 – transporta glicose do enterócito para o sangue  a favor do gradiente de concentração

13 Captação de glicose nos tecidos Difusão facilitada – transportadores de glicose (GLUT 1 a 4) GLUT1 – GLUT1 – Alta afinidade pela glicose  responsável pelo nível basal de glicose  atividade não é alterada pela insulina GLUT1 e GLUT 3 – GLUT1 e GLUT 3 – transporte de glicose para o cérebro  não é dependente de insulina GLUT2 – GLUT2 – Fígado, pâncreas, mucosa intestinal e rins  não é dependente de insulina GLUT4 – GLUT4 – Transportador de glicose insulino-sensível  tecido adiposo e muscular

14 REGULAÇÃO DA GLICEMIA Hormônios: Insulina e glucagon Açúcar no sangue regulado pela Insulina e Glucagon; Glicose alta pâncreas libera insulina Glicose baixa pâncreas libera glucagon Somatostatina – Somatostatina – regula liberação de insulina e glucagon

15 Glicose alta Glicose baixa

16 Liberação da Insulina Após detectar excesso de glicose (HIPERGLICEMIA); Exerce três efeitos principais: Estimula captação de glicose pelas células; Estimula a glicogênese; Estimula armazenamento de aa e ácidos graxos.

17 GLUCAGON Efeito antagônico à insulina; Formado pelas células  pancreáticas; Liberado na HIPOGLICEMIA; Função: Estimula degradação de glicogênio hepático e muscular; Estimula mobilização de aa e ácidos graxos; Estimula lipólise.

18

19 Metabolismo dos carboidratos Vias catabólicas: 1 - Glicólise aeróbica (piruvato) 2 - Glicólise anaeróbica (ac. láctico) Vias anabólicas: 1 - Glicogênese 2 – Ciclo das pentoses 3 – Cadeia respiratória 4 - Gliconeogênese

20 Destinos Metabólicos dos Carboidratos Dietéticos Não digerido

21 Fornecimento de energia : Produção de ATP

22 GLICÓLISE A oxidação da glicose em ácido pirúvico primeira etapa no catabolismo de carboidratos. Fonte: Tortora, G.J. 8ª ed.; 2006

23 Reação catalisada pela enzima hexoquinase nos tecidos e pela glicoquinase no fígado, é irreversível Hexoquinase  alta afinidade (baixo K m ), baixa V m e é inibida pelo produto Glicoquinase  menor afinidade (alta K m ), alta V m e é não inibida pelo produto Fosforilação da glicose  impede saída da célula  molécula carregada negativamente  impossível atravessar passivamente a membrana celular Fosforilação da glicose

24 Indução e repressão da síntese Insulina Glucagon (Stryer, 2004)

25 Produção de acetil-CoA a partir do piruvato

26 Ciclo de Krebs Sinônimos:Ciclo dos ácidos tricarboxílicos Ciclo do ácido cítrico Conceito: Via catabólica cíclica de oxidação total da glicose a CO 2 e H 2 O, com liberação de ENERGIA Só ocorre em condições aeróbicas Conhecido como RESPIRAÇÃO CELULAR.

27

28

29 Ciclo de Krebs São liberados vários H +, que são capturados pelos NAD e FAD, transformando-se em NADH e FADH 2 ; Ocorre liberação de energia resultando na formação de ATP

30 Cadeia Transportadora de Elétrons Ocorre nas cristas mitocondriais; Também chamado Fosforilação Oxidativa; Sistema de transferência de elétrons provenientes do NADH e FADH 2 até a molécula de O 2 O elétron “pula” de um citocromo para outro até chegar no O 2, ocorrendo liberação de energia convertida em ATP

31 CADEIA DE TRANSPORTE DE ELÉTRONS A CTE é a convergência final de todas as vias de degradação oxidativa Formada por uma série de oxirredutases organizadas em complexos protéicos na membrana interna da mitocôndria  possibilita a regeneração do NAD+ e do FAD  O2 que se reduz a H2O A energia livre disponibilizada pelo fluxo de e - criado é acoplado ao transporte contracorrente de prótons através da membrana interna da mitocôndria, conservando parte desta energia como potencial eletroquímico transmembrana O fluxo transmembrana de prótons “de volta” a favor de seu gradiente de concentração através dos poros protéicos específicos fornece energia livre para a síntese para a síntese de ATP

32 CADEIA DE TRANSPORTE DE ELÉTRONS Cit cc 1 Cit aa 3 H2OH2O NADH FADH2. CoQ Cit bb 52 kcal ½ O 2 + 2H Progressão ao longo da cadeia de transporte de elétrons Energia potencial química

33 2e- + 2H + CADEIA DE TRANSPORTE DE ELÉTRONS

34 Fosforilação Oxidativa A transferência de elétrons pela CR é energeticamente favorável, pois o NADH é um forte doador de elétrons e o Oxigênio é um ávido aceptor. No entanto, o fluxo de elétrons através da CR não resulta diretamente em síntese de ATP. O evento primário na Fosforilação Oxidativa é a translocação de prótons H+ gerados pela oxidação para fora da membrana mitocondrial interna. A membrana é impermeável a íons, isso gera um potencial químico (diferença de pH) e um potencial elétrico de 0,14 volts.

35 Esta diferença de potencial eletroquímico é usado para ativar uma enzima ATP-sintase localizada na membrana.

36 Desidrogenases geram NADH+H+ e FADH2 que, na cadeia respiratória, geram uma corrente elétrica capaz de fazer transporte ativo de prótons para o espaço intermembrana da mitocôndria. A energia contida nas moléculas combustíveis (glicose, ácidos graxos) é transferida aos prótons que, durante sua reentrada na mitocôndria, permitem a síntese de ATP.

37

38 Obtenção de energia pelo organismo animal

39 Glicogênese Ocorre em todos os tecidos, mais proeminente no fígado e músculo; Fígado armazena glicogênio para enviar glicose, pelo sangue aos outros tecidos, quando necessário; O músculo armazena apenas para consumo próprio, só utiliza durante o exercício quando há necessidade de energia rápida.

40 Glicogênese Glicogenina ou fragmento de glicogênio Sintase iniciadora do glicogênio Sintase do glicogênio Glicosil (4:6) transferase

41 Glicogênese Glicose-6-fosfato Fosfoglicomutase Glicose-1-fosfato Uridina difosfato glicose Glicogênio sintase Glicogênio

42 Glicogênese no músculo

43 VIA DAS PENTOSES Via alternativa de oxidação das hexoses, independente da glicólise Via citoplasmática, anaeróbica ocorrendo no fígado, glândulas mamárias, tecido adiposo e nas hemácias As funções principais são: produção de NADPH e ribose-5-P.

44 Metabolismo de carboidratos durante o repouso Estoques de Glicogênio muscular são preservados para o uso durante alta atividade muscular esquelética. Os estoques de Glicogênio Hepático são encarregados de manter a Glicemia entre as refeições CÉREBRO SNCCélulas Sangüíneas e os rins

45 Metabolismo de carboidratos no jejum Insulina Glucagon Período de privação Troca de substratos entre fígado, catabólico tec. adiposo, músculos e cérebro Objetivo 1 – manter glicemia 2 – mobilização de ác. graxos do tecido adiposo e corpos cetônicos do fígado

46 Estado inicial do jejum Após período absortivo  Glicose sangüínea insulina / glucagon Glucagon glicogenólise Gliconeogênese  4 horas após a refeição Glicose derivada da glicogenólise é liberada para o sangue Captação reduzida de glicose pelo músculo e adipócitos (Stryer, 2004)

47 Manutenção obtida através de 3 fatores principais 1) mobilização de glicogênio e liberação de glicose pelo fígado 2) Liberação de ac. graxos 3) Utilização de ac. graxos pelo músculo e pelo fígado  Fígado não absorve glicose diretamente do sangue  Glicose recém-sintetizada é usada para repor glicogênio

48 Jejum prolongado Alterações no 1º dia de jejum = jejum noturno Processos metabólicos dominantes - Mobilização de TAG (lipólise) - Gliconeogênese [Acetil CoA] e citrato inibe glicólise Músculos diminui captação de glicose passando a utilizar ác. graxos Proteólise gliconeogênese

49 Gliconeogênese Via anabólica que ocorre no fígado e, excepcionalmente no córtex renal, que é responsável pela síntese de glicose a partir de fontes que não são carboidratos. Substratos: lactato, piruvato, glicerol e alfa-cetoácidos

50

51

52

53 Jejum prolongado Após 3 dias de inanição corpos cetônicos liberados no sangue Cérebro Coração Várias semanas de inanição Cérebro corpos cetônicos principal fonte energética Corpos cetônicos podem atravessar barreira hemato-encefálica Usam o acetoacetado como fonte de energia

54 Jejum prolongado : Cetogênese Corpos cetônicos  sintetizados nas mitocôndrias dos hepatócitos a partir do excesso de acetil-CoA  aumento da lipólise e desvio do oxaloacetato do CK para a gliconeogênese sangue Tecido muscular Tecido nervoso

55 Jejum prolongado Diminuição da degradação protéica Utilização de 40g de glicose X 120g no início do jejum Tempo de sobrevivência depende do depósito de TAG Terminado as reservas de TAG proteólise Perda da função cardíaca, hepática e renal morte

56 Interações metabólicas


Carregar ppt "Unidade 4 – Metabolismo de Carboidratos. Introdução AldosesCetoses Trioses (C 3 H 6 O 3 )GliceraldeídoDihidroxiacetona Tetroses (C 4 H 8 O 4 )EritroseEritrulose."

Apresentações semelhantes


Anúncios Google