Carregar apresentação
A apresentação está carregando. Por favor, espere
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
1
CONTROLE E SERVOMECANISMO
2
Bibliografia Engenharia de Sistemas de Controle Norman S.Nise
Engenharia de Controle Moderno Katsuhiro Ogata Sistemas de Controle Modernos Dorf/Bishop Sistemas de Controle Automático Benjamin C.Kuo Automatic Control Systems Willian A.Wolovich J.LMartins de Carvalho Sistemas de Controle e Realimentação Phillips /Harbor Engenharia de Controle W.Bolton Apostila Prof.Josemar dos Santos Apostila prof. Haffner Apostila prof. Helio Leães Hey
3
INTRODUÇÃO AO CONTROLE
Importância do controle automático : propicia meios para desempenho ótimo de sistemas ,melhoria de qualidade,redução de custos ,aumento de produtividade,automação de atividades em geral. Aplicações : sistemas de pilotagem de aviões ,mísseis,navios,sistemas de controle de veículos espaciais ,operações industriais ,etc.
4
Histórico do Controle James Watt : construção do regulador centrífugo para controle de velocidade de uma máquina a vapor no sec XVIII. Minorsky,1922: sistema de pilotagem de navios .Estabilidade –equações diferenciais . Nyquist,1932: procedimento para determinar estabilidade de sistemas em malha fechada. Hazen,1934:introdução do termo “servomecanismo” para sistemas de controle de posição.Projeto de servomecanismos e relés capazes de seguir uma entrada variável. Década de 40: Métodos de resposta em freqüência tornaram possível aos engenheiros projetar sistemas de controle lineares com realimentação. Coração da Teoria de Controle Clássico, : Desenvolvimento do método do lugar das raizes em projeto de sistema de controle(SISO). Evolução para sistemas MIMO a partir de 1960.
5
Regulador de WATT
6
SISTEMA DE CONTROLE DE TEMPERATURA
7
TERMINOLOGIA BÁSICA Planta : parte de um equipamento ou conjunto de partes de uma máquina que funcionam integrados como um sistema . Processo : identifica qualquer operação a ser controlada Perturbação : sinal que tende a afetar adversamente o comportamento da saída do sistema .Uma perturbação pode ser externa ,funcionando como uma entrada ,ou interna ao sistema
8
TERMINOLOGIA BÁSICA Sistema de controle realimentado : sistema que tende a manter uma relação prescrita entre a entrada e a saída ,por comparação. Servomecanismo : sistema de controle com realimentação no qual a saída pode ser uma posição,velocidade ou aceleração. Sistema regulador automático: sistema no qual a entrada de referência ,ou a saída desejada,ou é constante ou varia lentamente no tempo .O principal objetivo é manter a saída real em um valor desejado,na presença de perturbações .
9
Controle Malha Aberta São aqueles em que o sinal de saída não exerce nenhuma ação de controle no sistema.Isso quer dizer que um sistema de controle de malha aberta o sinal de saída não é medido nem realimentado para comparação com a entrada .Na presença de distúrbios um sistema de malha aberta não vai executar a tarefa desejada.O sistema de malha aberta somente poderá ser utilizada na prática se a relação entre a entrada e a saída for conhecida e se não houver disturbio interno ou externo.
10
Sistema de Malha Aberta
11
Controle Malha Fechada
Os sistemas de controle com realimentação são denominados de sistemas de controle de malha fechada .Em um sistema de malha fechada ,o sinal de erro atuante ,que é a diferença entre o sinal de realimentação (que pode ser o próprio sinal de saída ou uma função do sinal de saída e suas derivadas e/ou integrais )realimenta o controlador ,de modo que minimize o erro e acerte a saída do sistema ao valor desejado.
12
Sistema de Malha Fechada
13
Sistema de Controle Independentemente do tipo de sistema de controle que temos ,os elementos Básicos do sistema podem ser descritos por: Objetivos de controle Componentes do sistema de controle Resultados
14
Sistema de Controle Em geral ,o objetivo do sistema de controle é controlar as saídas e de alguma maneira predeterminada ,através das entradas u e dos elementos do sistema de controle .As entradas do sistema também são chamadas de sinais atuantes ,e as saídas de variáveis controladas. Os sistemas com mais de uma entrada e uma saída são chamados de sistemas multivariáveis.
15
Exemplo de um sistema de controle em malha fechada
16
Função de Transferência
A função de transferência de um sistema linear invariante no tempo é definida como sendo a relação entre a transformada de Laplace da saída (função resposta) e a transformada de Laplace da entrada (função excitação).considerando nulas todas as condições iniciais .
17
Função de Transferência
Podemos então escrever a função de transferência como:
18
Modelagem de Sistemas Um dos primeiros passos de maior importância na análise e no projeto de um sistema de controle é a descrição matemática e a modelagem do processo a ser controlado. Modelar um sistema físico qualquer significa obter uma representação matemática que permita um estudo analítico coerente com o comportamento do sistema na prática.
19
Classificação de Modelos Matemáticos
20
CAUSAL x Não Causal : um sistema causal depende apenas de condições
presentes ou passadas ,e não dependem de estados futuros .Sistemas físicos são todos causais . Estático x Dinâmico : processo cujo valor das variáveis permanece constante no tempo. Dinâmico ,as variáveis variam no tempo ,que é a variável independente . Determinísticos x Estocásticos : em um modelo determinístico a saída pode ser calculada de forma exata tão logo se conheça o sinal de entrada e as condições iniciais . Parâmetros concentrados x parâmetros distribuídos :sã descritos por um Número finito de equações ,enquanto que nos distribuídos são descritos por um número infinito de equações .Todo sistema real é distribuído . Linear x Não linear : um modelo é linear se a(s) saídas depende (m) linearmente da(s) entrada(s),caso contrário é dito não linear Invariantes no tempo x Variantes no tempo : seus parâmetros não variam ao longo do tempo,o oposto no caso de modelos variantes no tempo. Tempo contínuo x Tempo Discreto: descrevem a relação entre entradas e saídas em pontos de tempo discreto.Normalmente os modelos em tempo discreto são descritos por equações de diferença ,ao passo que os modelos em tempo contínuo são descritos por equações diferenciais .
21
com parâmetros concentrados Invariantes no tempo Contínuos
Neste curso iremos estudar : Sistemas causais, dinâmicos, determinísticos com parâmetros concentrados Invariantes no tempo Contínuos
22
Sistemas mecânicos Translacionais e rotacionais
Sistemas mecânicos são aqueles compostos por massas,molas,amortecedores e transmissões.A análise de sistemas mecânicos envolve praticamente dois tipos distintos de movimentos:translacional e rotacional.O equacionamento do sistema pode ser realizado de acordo com as Leis de Newton .Assim ,sistemas mecânicos estarão associados a forças (quando translacionais ) e torques (quando rotacionais ).
23
Elementos de um Sistema Mecânico
Massa (ou Inércia) Mola Amortecedor Armazena Energia Cinética e Energia Potencial Gravitacional Armazena Energia Potencial Elástica Dissipa Energia Mecânica sob forma de Calor e/ou Som
24
Graus de Liberdade (GDL)
Número mínimo de coordenadas independentes que descrevem completamente o movimento de todos os elementos do sistema No de GDL do sistema = No de massas do sistema x No de GDL de cada massa
25
Exemplos de Sistemas com 1 GDL
26
Exemplos de Sistemas com 2 GDL
27
Exemplos de Sistemas com 3 GDL
28
Elementos Translacionais
MASSA (m)
29
Elementos Translacionais
Mola (k)
30
Elementos Translacionais
Amortecedor ( b )
31
Resumo
32
TRANSFORMAÇÃO DE UMA EDO PARA TRANSFORMADA DE LAPLACE
33
EXERCÍCIOS 1)
34
EXERCÍCIOS 2)
35
DESAFIO
36
EXERCÍCIOS 1) ) )
37
Elementos Rotacionais
Elementos mecânicos rotacionais são elementos forçados a girar em torno de um eixo .Em sistemas mecânicos translacionais ,realizamos a análise através do equilíbrio de forças.Neste caso,em elementos girantes ,devemos levar em consideração o torque associada aos elementos .
38
Elementos Rotacionais
Mola de torção ( k )
39
Elementos Rotacionais
40
Elementos Rotacionais
Amortecedor rotacional ( b)
41
Elementos Rotacionais
42
Elementos Rotacionais
Inércia (J )
43
Elementos Rotacionais
44
Elementos amplificadores/redutores
São elementos que realizam alguma transformação quantitativa de uma variável.Em sistemas translacionais podemos citar as alavancas e em sistemas rotativos,polias e engrenagens. Amplificadores Lineares ( Alavancas )
45
Amplificadores Rotacionais ( Engrenagens / Polias )
Geralmente utilizados para reduzir a velocidade e conseqüentemente aumento de torque .Possui relação inversa entre o raio da polia ou o número de dentes das engrenagens com a velocidade angular,pois devem possuir a mesma velocidade tangencial e força .Assim :
46
Resumo
47
Sistemas Elétricos A modelagem de sistemas elétricos é baseada nas leis das tensões e das correntes de Kirchoff. Os elementos envolvidos nos circuitos elétricos são :resistores,indutores,capacitores,etc.
48
Sistemas Elétricos
49
Sistemas Análogos Sistemas que podem ser representadas pelo mesmo modelo matemático,mas que são fisicamente diferentes ,são chamados de sistemas análogos.
50
Analogias mecânico - elétricas
Há duas analogias elétricas para sistemas mecânicos a analogia “força-tensão” e a analogia “força-corrente”
51
Analogias mecânico - elétricas
52
Analogias mecânico - elétricas
53
Analogias mecânico - elétricas
54
Analogias mecânico - elétricas
Analogia força-tensão :a cada ponto que se desloca no sistema mecânico ,e no qual tem-se particular interesse ,correspondente uma malha fechada no circuito elétrico.Nestas malhas são colocados os elementos elétricos análogos dos mecânicos conforme a tabela abaixo:
55
Analogias mecânico - elétricas
Analogia força – corrente : a cada ponto que se desloca no sistema mecânico ,e no qual tem-se particular interesse ,correspondente um nó no circuito elétrico análogo,onde se ligam fontes de corrente e outros elementos análogos aos mecanismos, de acordo com a tabela abaixo:
56
Exemplo
57
DIAGRAMA DE BLOCOS Na figura temos um sistema que pode ser definido como um dispositivo abstrato que recebe entradas e produz saídas como resposta a essas entradas. Na Figura (a), exemplo gráfico de um sistema genérico S que recebe uma entrada x e dá uma saída y como resposta. Em (b) da mesma figura, exemplo de um sistema com circuito RC: a tensão da fonte vs pode ser considerada entrada e a tensão no capacitor vc, saída.
58
DIAGRAMA DE BLOCOS O diagrama de blocos possue vários itens na sua representação:
59
DIAGRAMA DE BLOCOS
60
Blocos em série(cascata)
Podemos ter dois ou mais blocos em série (cascata),quando os mesmos estão no ramo direto então a função de transferência passa a ser G(s) da resultante do sistema ,isto é : G(s)
61
Blocos em série(cascata)
62
Função de transferência em malha fechada
63
Realimentação
64
SIMPLIFICAÇÃO DOS DIAGRAMAS DE BLOCOS
65
SIMPLIFICAÇÃO DOS DIAGRAMAS DE BLOCOS
66
SIMPLIFICAÇÃO DOS DIAGRAMAS DE BLOCOS
67
SIMPLIFICAÇÃO DOS DIAGRAMAS DE BLOCOS
68
EXEMPLO
69
ENTRADAS MULTIPLAS(PERTURBAÇÕES)
EXEMPLO :
70
PROCEDIMENTO
71
SOLUÇÃO 1) CASO
72
SOLUÇÃO 2) caso
73
SOLUÇÃO FINAL
74
Gráfico de fluxo de sinais
75
Gráfico de fluxo de sinais
76
definições
77
Álgebra do fluxo de sinais
78
Fórmula do Ganho de Maison
79
Exemplo
80
FORMULA DE MAISON
81
EXEMPLO
Apresentações semelhantes
© 2025 SlidePlayer.com.br Inc.
All rights reserved.