A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

CENTRIFUGAÇÃO.

Apresentações semelhantes


Apresentação em tema: "CENTRIFUGAÇÃO."— Transcrição da apresentação:

1 CENTRIFUGAÇÃO

2 CENTRIFUGAÇÃO Livro de consulta: Christie John Geankoplis. Transport Process and Separation Processes. Prentice-Hall, 2003.

3 Centrifugação Na sedimentação as partículas são separadas de um fluído por ação da força gravitacional. A separação gravitacional pode ser muito lenta devido a vários fatores: (a) tamanho pequeno das partículas, (b) densidades próximas da partícula e do fluido (c) forças associativas que mantém componentes ligados (como nas emulsões). O uso da força centrífuga aumenta muitas vezes a força que atua sobre o centro de gravidade das partículas, facilitando a separação e diminuindo o tempo de residência no equipamento.

4 A centrifuga é um recipiente cilíndrico que gira a alta velocidade criando um campo de força centrífuga que causa a sedimentação das partículas. Os fluidos e sólidos podem exercer uma força muito alta contra à parede do recipiente, esse fato limita o diâmetro das centrífugas.

5 Equações de força centrífuga.
A aceleração pela força centrífuga é dada por ae é a aceleração devido à força centrífuga (m/s2) r é a distância radial do centro da rotação (m) ω é a velocidade angular (radianos / s). A força centrífuga Fc

6 ω = velocidade angular ω = v/r g v é a velocidade tangencial (m/s)
As velocidades rotacionais ( N ) costumam ser dadas em RPM ou seja por rotações/min, As unidades de ω no SI são radianos por segundo Substituindo

7 A força gravitacional em uma partícula é
A força centrifuga é Se comparamos ambas equações: Assim, a força desenvolvida em uma centrífuga é rω2/g vezes maior que a força gravitacional.

8 Ex. 1: Aumento da força pela centrifugação
Uma centrífuga tem raio de cilindro de m e uma velocidade de giro de 1000 RPM Quantas vezes maior é a força centrifuga em relação a gravitacional? Qual seria o efeito na força centrífuga ao dobrar o raio do equipamento? Qual seria o efeito de duplicar a velocidade de rotação? Fórmula:

9 Ex. 1: Resolução R = 0.1016 m N = 1000 RPM R = 2 x 0.1016 m Fórmulas:

10 Ex. 1: Respostas R = 0.1016 m N = 1000 RPM R = 2 x 0.1016 m

11 Taxas de Separação em Centrífugas
Assume-se que : Todo o líquido se move para cima à velocidade uniforme, transportando partículas sólidas com ele. As partículas movem-se radialmente na vt de sedimentação. Se o tempo de residência for suficiente para que a partícula chegue até parede do tambor ela é separada

12 Na região A: vt > vs ocorre transporte sem separação
vs =velocidade de sedimentação vt =velocidade de transporte Na região A: vt > vs ocorre transporte sem separação Na região B: vs > vt separação problemática Na região C: vs >> vt boa separação

13 vt = velocidade de sedimentação na direção radial
A velocidade terminal de sedimentação, em um raio r, se o regime for laminar, de acordo com a lei de Stokes é : Onde vt = velocidade de sedimentação na direção radial Dp = diâmetro da partícula µ = viscosidade do líquido rp = densidade de partícula r = densidade do líquido Como vt = dr/dt É possível converter a equação da velocidade terminal em uma equação diferencial e depois integrá-la.

14

15 Equação do tempo de residência
Integrando entre os limites para t = 0 r = r1 para t = tr r = r2

16 dividido pela vazão volumétrica da alimentação.
O tempo de residência é igual ao volume de líquido do tambor da centrífuga dividido pela vazão volumétrica da alimentação. Tempo de residência: Volume do líquido no tambor: Pode se obter a equação da vazão volumétrica, q :

17 Equação da vazão volumétrica
Substituindo Reagrupando termos As partículas com diâmetro menor que Dp não alcançam a parede do tambor e saem com o efluente. As partículas maiores atingem a parede e são separadas.

18 As partículas menores do Diâmetro Crítico Dpc não serão retidas
Dpc define-se como o diâmetro de uma partícula que consegue atingir a periferia do tambor partindo de uma distância entre r1 e r2. A integração é feita considerando que para t = r = (r1 + r2)/2 em t = tT r = r2 Na vazão qc as partículas com um diâmetro maior do que Dpc serão separadas e as menores permanecerão no líquido

19 Ex.2: Sedimentação em centrífuga
Uma suspensão será clarificada por centrifugação. Ela contém partículas com densidade ρp= 1461 kg/m3. A densidade da suspensão é ρ = 801 kg/m3 e sua viscosidade é 100 cP. As dimensões da centrífuga são: r2 = m r1 = m altura b = m. Calcule o diâmetro crítico das partículas se N = revoluções/minuto e qc = m3/h. 19

20 Ex.2: Resolução Questão: Dpc =? Fórmula: Dados:
ρp= 1461 kg/m3 ρ = 801 kg/m3 μ = 100 cP r2 = m, r1 = m b = m N = rpm qc = m3/h 20

21

22 Separação de líquidos em uma centrífuga.
A separação de suspensões líquido-líquido compostas de líquidos imiscíveis que estão finamente dispersos como uma emulsão são um problema comum na indústria alimentícia. Um exemplo é a emulsão de leite que é separada em dois produtos: leite desnatado e creme ou nata, usando centrífugas. Nessas separações, a posição da barreira de transbordamento na saída da centrífuga é muito importante na realização da separação desejada. Fora isso os discos de saída de raio diferente permitem o ajuste do funcionamento da centrífuga,

23 Separação de duas fases líquidas:
líquido pesado com rH líquido leve com rL r4 – r2 Onde : r1 = raio até a superfície da camada do líquido leve. r2 – r1 r2 = raio até a interface líquido-líquido. r4 = raio até a superfície do fluxo de escoamento do líquido pesado.

24 Para localizar a interface entre os líquidos, deve ser feito um balanço das pressões nas duas camadas. A força no fluido na distância r é: Como Então

25 Integrando, obtemos: Na interface líquida em r2, a pressão exercida pela fase leve de espessura (r2 - r1) é igual à pressão da fase pesada de espessura (r2 - r4): Resolvendo para r22, na posição da interface, obtemos:

26 Ex.3: Altura da interface
Em um processo de refinação de óleo se separa a fase aquosa da face oleosa em uma centrífuga. A densidade do óleo é 919,5 kg/m3 A densidade da face aquosa é 980,4 kg/m3 O raio (r1) do escoamento do liquido mais leve é 10,160 mm O raio (r4) da saída da face pesada é 10,414 mm Calcule o raio (r2) da interface líquido-líquido

27 Ex.3: Solução Questão r2 = ? Dados r4 = 10,414 mm Formulas
ρL = 919,5 kg/m3 ρH = 980,4 kg/m3 r1 = 10,160 mm r4 = 10,414 mm r1 = 10,160 mm

28 Equipamentos - Centrifuga de Tambor
Utilizada apenas na clarificação de líquidos. O tambor é dotado de 2 a 8 elementos cilíndricos internos, uma série de câmaras anelares unidas consecutivamente. O produto a ser clarificado entra no tambor pelo centro, escoando consecutivamente por cada câmara anelar a partir da câmara mais interna. Em cada câmara o diâmetro é maior e aumenta a força centrífuga, fazendo o produto escoar por zonas centrífugas cada vez maiores, até o final do processo.

29 2. Centrífugas de disco Usada em separações líquido-líquido, algumas podem separa partículas finas de sólidos. A mistura é alimentada pelo fundo da centrífuga e escoa para cima passando através de buracos espaçados nos discos. Os buracos dividem a seção vertical em uma seção interna, onde fica o líquido leve, e uma seção externa, onde fica o líquido pesado.

30

31

32 Escolha do separador correto

33

34

35

36


Carregar ppt "CENTRIFUGAÇÃO."

Apresentações semelhantes


Anúncios Google