A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Números de Fibonacci e a Razão Dourada. O Problema dos coelhos -Cada par de coelhos gera outro par a cada mês -Um par recém nascido leva um mês para amadurecer.

Apresentações semelhantes


Apresentação em tema: "Números de Fibonacci e a Razão Dourada. O Problema dos coelhos -Cada par de coelhos gera outro par a cada mês -Um par recém nascido leva um mês para amadurecer."— Transcrição da apresentação:

1 Números de Fibonacci e a Razão Dourada

2 O Problema dos coelhos -Cada par de coelhos gera outro par a cada mês -Um par recém nascido leva um mês para amadurecer e dar cria -Nenhum coelho morre no período em estudo

3 Quantos coelhos haverao no mes k? n(k) = n(k-1) + n(k-2) NÚMEROS DE FIBONACCI Mês Número de coelhos

4 Número de Pétalas em Flores 1

5 2

6 3

7 5

8 8

9 13

10 21

11 34

12 MARGARIDAS

13 O número de espirais em cada direção, 21 e 34, são números de Fibonacci.

14 Existe uma explicação para o aparecimento desses números? Em muitos casos, uma flor é composta por pequenas sementes que são produzidas no centro e depois migram para a parte externa, até completar todo o espaço disponível. Cada nova semente surge a um certo ângulo em relação à semente anterior. Por exemplo, se o ângulo é 90 graus, ¼ de volta, o resultado depois de várias gerações seria com na figura 1 do próximo slide: Claramente essa não é a maneira mais eficiente de preencher o espaço! Para obtermos maior sucesso temos que escolher o ângulo como um múltiplo irracional de 360 graus. Na figura do meio o ângulo é e na última 137.5, que corresponde ao ângulo dourado.

15 90 graus ângulo dourado


Carregar ppt "Números de Fibonacci e a Razão Dourada. O Problema dos coelhos -Cada par de coelhos gera outro par a cada mês -Um par recém nascido leva um mês para amadurecer."

Apresentações semelhantes


Anúncios Google