A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Estatística Descritiva (II). corrida estacionáriapor 1 minuto Refere-se a um experimento feito por alunos. Cada um deles registrou sua altura, peso, sexo,

Apresentações semelhantes


Apresentação em tema: "Estatística Descritiva (II). corrida estacionáriapor 1 minuto Refere-se a um experimento feito por alunos. Cada um deles registrou sua altura, peso, sexo,"— Transcrição da apresentação:

1 Estatística Descritiva (II)

2 corrida estacionáriapor 1 minuto Refere-se a um experimento feito por alunos. Cada um deles registrou sua altura, peso, sexo, hábito de fumar e nível de atividade física. Depois, todos eles jogaram moedas e aqueles que tiraram CARA fizeram corrida estacionária por 1 minuto, registrando a pulsação antes de correr e a pulsação depois de correr. Os demais registraram a pulsação após 1 minuto, mesmo sem ter corrido. PULSE Arquivo PULSE do Minitab

3 PULSE MTB > INFO Informações do arquivo PULSE MTB > INFO Information of the worksheet Column Count Name C1 92 Pulse1 C2 92 Pulse2 C3 92 Ran 1- fez corrida 2- não fez corrida C4 92 Smokes 1- fuma 2- não fuma C5 92 Sex 1- masculino 2- feminino C6 92 Height C7 92 Weight C8 92 Activity 0- não tem 1- leve 2- moderada 3- intensa

4 Row Pulse1 Pulse2 Ran Smokes Sex Height Weight Activity 1 64 88 1 2 1 66,00 140 2 2 58 70 1 2 1 72,00 145 2 3 62 76 1 1 1 73,50 160 3 4 66 78 1 1 1 73,00 190 1 5 64 80 1 2 1 69,00 155 2 6 74 84 1 2 1 73,00 165 1 7 84 84 1 2 1 72,00 150 3 8 68 72 1 2 1 74,00 190 2 Planilha Planilha (parcial)

5 Variáveis qualitativas Variáveis quantitativas Pulse 1 Pulse 2 Height Weight Discreta Contínua Ran Smokes Sex Activity Nominal Ordinal

6 Variáveis Quantitativas Variância (s 2 ) Desvio padrão (s) Intervalo-interquartil (Q3 – Q1) Coeficiente de variação (CV) - Média (x) Mediana (md) Quartis (Q1, Q3) Máximo (máx) Mínimo (min) Medidas de posição Medidas de dispersão

7 Descriptive Statistics Variable N Mean Median Tr Mean StDev SE Mean Pulse1 Pulse1 92 72,87 71 72,61 11,01 1,15 Height Height 92 68,72 69 68,784 3,659 0,382 Weight Weight 92 145,15 145 144,52 23,74 2,48 Variable Min Max Q1 Q3 Pulse1 Pulse1 48 100 64 80 Height Height 61 75 66 72 Weight Weight 95 215 125 156,5 MTB > describe c1 c6 c7 CV 11,01/72,87=0,15 3,659/68,717=0,05 23,74/145,15=0,16

8 50% dos indivíduos tem pulsação menor ou igual a 71 batimentos por minuto; 25% dos indivíduos tem altura igual ou menor a 66 pés; 75% dos indivíduos tem peso igual ou menor a 156,5 libras; a variável com menor dispersão em relação à média é a altura; Pulsação e peso apresentam dispersão em relação à média praticamente iguais e o triplo da dispersão da altura. Alguns comentários:

9 MTB > describe c1; SUBC > by c3. Variable Ran N Mean Median Tr Mean StDev SE Mean Pulse1 1 Pulse1 1 35 73,60 70 72,97 11,44 1,93 2 2 57 72,42 72 72,47 10,82 1,43 Variable Ran Min Max Q1 Q3 Pulse1 1 Pulse1 1 58 100 64 80 2 2 48 94 64 81 MTB > describe c2; SUBC > by c3. Variable Ran N Mean Median Tr Mean StDev SE Mean Pulse2 1 Pulse2 1 35 92,51 88 91,68 18,94 3,20 2 2 57 72,32 70 72,24 9,95 1,32 Variable Ran Min Max Q1 Q3 Pulse2 1 Pulse2 1 58 140 76 106 2 2 50 94 66 79

10 Com relação às medidas de posição, os dois grupos antes de correr têm praticamente os mesmos valores; O grupo que correu (Ran=2) tem média de Pulse2 maior que o grupo que não correu (Ran=1). Com relação às medidas de dispersão, os dois grupos antes da corrida apresentam valores semelhantes; O grupo que correu apresenta um desvio padrão aproximadamente igual ao dobro do que o grupo que não correu. Alguns comentários:

11 MTB > DESCRIBE C1; SUBC> BY C5. Descrevendo a pulsação em repouso segundo o sexo MTB > DESCRIBE C1; SUBC> BY C5. Variable Sex N Mean Median TrMean StDev SE Mean Variable Sex Min Max Q1 Q3 Variable Sex N Mean Median TrMean StDev SE Mean Pulse1 1 57 70,42 70 70,27 9,95 1,32 2 35 76,86 78 76,65 11,62 1,96 Variable Sex Min Max Q1 Q3 Pulse1 1 48 92 63 75 2 58 100 66 86

12 Os dados também podem ser resumidos construindo-se uma tabela de distribuição de freqüências. Distribuição de freqüências Distribuição de freqüências de uma variável é uma lista dos valores individuais ou dos intervalos de valores que a variável pode assumir, com as respectivas freqüências de ocorrência.

13 Não há perda de informação MTB > tally c1 PULSE No arquivo PULSE Summary Statistics for Discrete Variables Pulse1 Count Percent 48 1 1,09 54 2 2,17 58 3 3,26 60 4 4,35 61 1 1,09 62 9 9,78 64 4 4,35 66 5 5,43 68 11 11,96 70 6 6,52 72 6 6,52 74 5 5,43 76 5 5,43 78 5 5,43 80 3 3,26 82 3 3,26 84 4 4,35 86 1 1,09 87 1 1,09 88 3 3,26 90 4 4,35 92 2 2,17 94 1 1,09 96 2 2,17 100 1 1,09 N= 92

14 Alternativa: construir intervalos de classe Classe de pulsação frequência 48 |- 54 54 |- 60 60 |- 66 66 |- 72 72 |- 78 78 |- 84 84 |- 90 90 |- 96 96 |- 102 1 5 18 22 16 11 9 7 3 Informações mais resumidas Perda de informação

15 Exemplo 2: Variável: altura ( height) contínua Construir intervalos de classe Classes de altura f fr 60,25 |- 61,75 61,75 |- 63,25 63,25 |- 64,75 64,75 |- 66,25 66,25 |- 67,75 67,75 |- 69,25 69,25 |- 70,75 70,75 |- 72,25 72,25 |- 73,75 73,75 |- 75,25 Total 1 10 2 13 7 20 7 15 9 8 92 0,011 0,109 0,022 0,141 0,076 0,217 0,076 0,163 0,098 0,087 1 Distribuição de freqüência para altura ( arquivo PULSE )

16 Variáveis Quantitativas Gráficos Dotplot Boxplot Histograma

17 DOTPLOT PULSE MTB > DOTPLOT C1 Arquivo PULSE – Dotplot da pulsação em repouso (PULSE1) MTB > DOTPLOT C1.. : : : :. : : :.... : : : : : : : : : :.. :. :. : : :.: : : : : : : : : : : :..: : :. :. ---+---------+---------+---------+---------+---------+- 50 60 70 80 90 100 Pulse1

18 PULSE Arquivo PULSE – Dotplot da pulsação em repouso (PULSE1) segundo Sexo (SEX) MTB > DotPlot 'Pulse1' ; SUBC> Same; SUBC> By 'Sex'. : Sex 1 : : :.. :.. : : : :... : : : : : : : : : : :... :. : : --+---------+---------+---------+---------+---------+- Sex 2.. :...:. : : : : : : : :..:.. :. --+---------+---------+---------+---------+---------+- 50 60 70 80 90 100 Pulse1

19 Boxplot quartis valores extremos. Representa os dados através de um retângulo construído com os quartis e fornece informações sobre os valores extremos.

20 Máximo Q3 Mediana Q1 Mínimo 25% 50% 75% Construção LS=Q3+1,5(Q3-Q1) LI=Q1-1,5(Q3-Q1) Máximo é o maior valor menor que LS; Mínimo é o menor valor maior que LI.

21 Exemplo: md = 41,5 Q1 = 30,25 Q3 = 49,5 * * 120 100 80 60 40 20 Dados ordenados (n=36) 18 21 21 23 23 25 27 29 30 31 32 32 32 34 35 36 38 41 42 42 43 44 45 46 46 47 48 50 54 56 57 58 60 61 98 116 LI = Q1 - 1,5(Q3 - Q1) =1,38 LS = Q3 + 1,5(Q3 - Q1) =78,38 Observações discrepantes? Tempo de sobrevivência (dias)

22 PULSE MTB > BOXPLOT C1 Arquivo PULSE –Boxplot da pulsação em repouso (PULSE1) MTB > BOXPLOT C1 Alguns Comentários: não há observações discrepantes; a distribuição dos valores é aproximadamente simétrica.

23 PULSE PULSE1SEX Arquivo PULSE – Boxplots da pulsação em repouso (PULSE1) por sexo (SEX) MTB > BOXPLOT C1*C5 Alguns Comentários: não há observações discrepantes; as medidas de posição são maiores para o sexo feminino; não há fortes evidências de assimetria nos dois grupos.

24 Histograma Bases iguais Construir um retângulo para cada classe, com base igual ao tamanho da classe e altura proporcional à freqüência da classe (f).altura proporcional à freqüência da classe (f). Agrupar os dados em intervalos de classes (distribuição de freqüências) Bases diferentes Construir um retângulo para cada classe, com base igual ao tamanho da classe e área do retângulo igual a freqüência relativa da classe(fr). A altura será dada porárea do retângulo igual a freqüência relativa da classe(fr). h = fr/base (densidade de freqüência).

25 PULSEHistograma da altura Arquivo PULSE – Histograma da altura (Height) Distribuição de freqüência para altura (arquivo PULSE) Classe de altura f fr 60,25 61,75 61,75 63,25 63,25 64,75 64,75 66,25 66,25 67,75 67,75 69,25 69,25 70,75 70,75 72,25 72,25 73,75 73,75 75,25 Total 1 10 2 13 7 20 7 15 9 8 92 0,011 0,109 0,022 0,141 0,076 0,217 0,076 0,163 0,098 0,087 1 MTB > HIST C6

26 Exemplo Exemplo : Classes desiguais 0 3 12 24 60 f Classes (meses) f fr h 0 |- 3 140 0,28 0,093 3 |- 12 100 0,20 0,022 12 |-24 80 0,16 0,013 24 |-60 180 0,36 0,010 Total 500 1,00 Vacinação Infantil 0 3 12 24 60 h 0,10 0,02 0,04 0,06 0,08

27 Forma da Distribuição

28 Variáveis Qualitativas Os dados podem ser resumidos construindo- se uma tabela de distribuição de freqüências, que quantifica a freqüência das distintas categorias. PULSE Variáveis qualitativas no arquivo PULSE Ran Smokes Sex Activity

29 PULSE Variáveis qualitativas no arquivo PULSE MTB > Tally 'Sex' 'Smokes' 'Activity'; SUBC> Counts; SUBC> Percents. Summary Statistics for Discrete Variables Sex Count Percent Smokes Count Percent 1 57 61,96 1 28 30,43 2 35 38,04 2 64 69,57 N= 92 N= 92 Activity Count Percent 0 1 1,09 1 9 9,78 2 61 66,30 3 21 22,83 N= 92

30 Podemos também construir tabelas de freqüências conjuntas (tabelas de contingência), relacionando duas variáveis qualitativas. Exemplo 1 Exemplo 1 : Há indícios de associação entre Sexo e Hábito de fumar? Como concluir? Qual o significado dos valores desta tabela?

31 MTB > Table 'Sex' 'Smokes'; SUBC> Counts. Rows: Sex Columns: Smokes 1 2 All 1 20 37 57 2 8 27 35 All 28 64 92

32 Verificar associação através da: - porcentagem segundo as colunas, ou - porcentagem segundo as linhas. Como concluir? Qual o significado dos valores desta tabela?

33 MTB > Table 'Sex' 'Smokes'; SUBC> ColPercents. (RowPercents/TotPercents) SexSmokes Rows: Sex Columns: Smokes 1 2 All 1 71,43 57,81 61,96 2 28,57 42,19 38,04 All 100,00 100,00 100,00

34 MTB > Table 'Sex' 'Smokes'; SUBC> Counts; SUBC> RowPercents. 35,0964,91 22,8677,14 30,4369,57 Rows: Sex Columns: Smokes 1 2 All 1 20 37 57 35,09 64,91 100,00 2 8 27 35 22,86 77,14 100,00 All 28 64 92 30,43 69,57 100,00 Cell Contents – Count - % of Row

35 Exemplo 2 Exemplo 2 : Dentre os que correram, qual a porcentagem de mulheres? MTB > Table 'Ran' 'Sex'; SUBC> Counts; SUBC> RowPercents. Rows: Ran Columns: Sex 1 2 All 1 24 11 35 68,57 31,43 100,00 2 33 24 57 57,89 42,11 100,00 All 57 35 92 61,96 38,04 100,00 Resposta: 31,43%

36 Variáveis Qualitativas Gráfico de setores Gráfico de barras Gráficos

37 Gráfico de setores Um círculo é dividido em tantos setores quantas forem as categorias da variável. A área de cada setor é proporcional à freqüência da categoria

38 PULSE Arquivo PULSE Gráfico de setores para a variável Ran MTB > %Pie c3.

39 PULSE Arquivo PULSE Gráfico de setores para a variável Activity

40 Gráfico de barras Sobre um eixo, são representados retângulos, um para cada categoria da variável. A altura do retângulo é proporcional à freqüência da categoria

41 PULSE Arquivo PULSE Gráfico de barras para a variável RAN MTB > Chart C3

42 PULSE Arquivo PULSE Gráfico de barras para a variável Activity MTB > Chart C8


Carregar ppt "Estatística Descritiva (II). corrida estacionáriapor 1 minuto Refere-se a um experimento feito por alunos. Cada um deles registrou sua altura, peso, sexo,"

Apresentações semelhantes


Anúncios Google