Carregar apresentação
PublicouVitória Macario Alterado mais de 11 anos atrás
1
Introdução ao processamento de dados e à estatística - parte 02
Ricardo José Lavitschka
2
Medidas de Dispersão Além das medidas de tendência central como a média aritmética e a mediana, há a necessidade de ferramentas para mensurar a “dispersão”. Estas medidas indicam se os valores estão relativamente separados ou próximos entre sí
3
Quão próximos estão os valores de um grupo de dados?
(a) Pequena dispersão (b) Grande dispersão
4
Dispersão: 4 medidas Intervalo Desvio médio Variância Desvio padrão
5
Intervalo Medida mais simples de calcular
Mensurado a partir da diferença dos valores extremos (o maior e o menor valor) Sua limitação reside no fato de levar em conta apenas os valores extremos
6
Exemplos: Intervalo 1,5, 7, – 1 = 12 14, 3, 17, 4, 8, 73, 36, – 3 = 70 3,2; 4,7; 5,6; 2,1; 1,9; 10, ,3 – 1,9 = 8,4 Você pode expressar o intervalo como a diferença entre o maior e o menor número do grupo de dados, ou ainda pela identificação destes dois números.
7
Desvio médio absoluto (DMA)
Mede o desvio médio dos valores em relação à média do grupo Todos os valores são considerados positivos para efeito de cálculo
8
Executando... Calcule a média aritmética
Determine a diferença entre a média e cada valor (subtraia de cada número do conjunto de dados a média) Verifique que a soma dos números resultantes seja 0. Faça a “média aritmética” com os valores absolutos – você obterá assim o desvio médio absoluto (DMA).
9
Exercícios: Determine o desvio médio (DMA) para o conjunto de valores: 1, 2, 3, 4, 5 Determine a média, a mediana e o desvio médio (DMA) para cada um dos conjuntos de dados: 7; 9; 2; 1; 5; 4,5; 7,5; 6,2 1, 2, 10, 7, 7, 9, 8, 5, 2, 11 30, 2, 79, 50, 38, 17, 9 0,011; 0,032; 0,027; 0,035; 0,042 90, 87, 92, 81, 78, 85, 95, 80 42, 30, 27, 40, 25, 32, 33
10
Respostas 1) 1,2 2) a) média = 5,275; mediana= 5,6; desvio médio = 2,15 b) média= 6,20; mediana = 7; desvio médio = 2,96 c) média = 32,142; mediana = 30; desvio médio = 20,163 d) média = 0,0294; mediana = 0,032; desvio médio = 0,0083 e) média= 86; mediana = 86; desvio médio = 5 f) média= 32,714; mediana= 32; desvio médio = 4,816
11
Variância O cálculo da variância de uma amostra é similar ao do desvio médio absoluto (DMA), com as seguintes diferenças: Os desvios são elevados o quadrado antes da soma A média é obtida dividindo-se por n – 1, em lugar de n. (se forem dados amostrais, pois se os mesmos se referirem a toda uma população se recomenda o uso de n )
12
Qual a variância do conjunto 2, 4, 6, 8, 10 ?
Média arit. x² 2 6 -4 16 4 -2 8 10 Somas 40 Se dado amostral = 40/5-1 = 10 Se representam toda população = 40/5 = 8
13
Variância, executando... Calcular a média
Subtrair a média de cada valor do conjunto Elevar o quadrado de cada desvio Somar os quadrados dos desvios Dividir a soma por (n -1 ) se se trata de dados amostrais, ou simplesmente por n se os dados representam todos os valores de uma população.
14
Desvio Padrão É simplesmente a raiz quadrada positiva da variância. Assim se a variância é 81, o desvio padrão é 9; se a variância é 10, o desvio padrão é 3,16.
15
Exercícios: 1) Calcule a média, a variância e o desvio padrão para o conjunto de dados abaixo, supondo que eles representem: (a) uma amostra; (b) a população. 83, 92, 100, 57, 85, 88, 84, 82, 94, 93, 91, 95 2) Calcule o intervalo, o desvio médio absoluto (DMA) e a variância do grupo de dados relativos a uma amostra quaisquer: 26.5, 27.5, 25.5, 26, 27, 23.4; 25.1, 26.2; 26.8
16
Respostas 1) (a) : Média = 87; variância = 119,4545; desvio padrão = 10,92 (b) : Média = 87; variância = 109,5378; desvio padrão = 10,46 2) Intervalo = 23.4 à 27.5, ou, 4.1 DMA = 0,8888 Desvio padrão = 1,22 Variância = 1,5
17
Outras medidas... Outra medida comumente utilizada é a proporção, que é a fração, ou percentagens de itens de determinado grupo ou classe. Por exemplo, se num grupo de 40 pessoas 10 têm casa própria, dizemos que a proporção dos que a têm é de 10/40 = 0,25 ou 25%.
18
Converta em fração ou percentagem...
5 crianças em 25 7 pacientes 9 3 vermelhos, 4 azuis e 5 verdes em 12 dados.
19
1) Usando a figura, calcule as seguintes frações ou percentagens:
Dias de sol em junho Dias parcialmente nublados em junho Domingos de sol Dias de semana chuvosos Dias com neve
20
2) Com os dados de obtidos, e adequando alguns dos itens para um cálculo de freqüência mensal, proponha um simples gráfico (de colunas) de distribuição dos eventos citados
Apresentações semelhantes
© 2024 SlidePlayer.com.br Inc.
All rights reserved.