A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

MEDIDAS DE DISPERSÃO Medidas de tendência central fornecem um resumo parcial das informações de um conjunto de dados. A necessidade de uma medida de variação.

Apresentações semelhantes


Apresentação em tema: "MEDIDAS DE DISPERSÃO Medidas de tendência central fornecem um resumo parcial das informações de um conjunto de dados. A necessidade de uma medida de variação."— Transcrição da apresentação:

1 MEDIDAS DE DISPERSÃO Medidas de tendência central fornecem um resumo parcial das informações de um conjunto de dados. A necessidade de uma medida de variação é aparente, para que nos permita, por exemplo, comparar conjuntos diferentes de valores. Algumas característica desta medida devem ser atendidos como veremos a seguir.

2 MEDIDAS DE DISPERSÃO Amostragem A: 8, 8, 9, 10, 11, 12, 12 Média 10; Mediana 10 e Bimodal (8, 12) Amostragem B: 5, 6, 8, 10, 12, 14, 15 Média 10; Mediana 10 e sem Moda Amostragem C: 1, 2, 5, 10, 15, 18, 19 Média 10; Mediana 10 e sem Moda As medidas de tendência central pouco ou nada informam a respeito da dispersão dos dados O conceito de medida de dispersão é relativamente difícil. O quanto informativo é dizer que as três amostragens possuem dispersão 4, 10 e 18 (Y7-Y1)?

3 MEDIDAS DE DISPERSÃO Amostragem D: 8, 9, 10, 10, 10, 11, 12 Média 10; Mediana 10 e Modal 10 Amostragem E: 5, 7, 9, 10, 11, 13, 15 Média 10; Mediana 10 e sem Moda Amostragem F:1, 5, 8, 10, 12, 15, 19 Média 9; Mediana 10 e sem Moda Estes três conjuntos de dados também possuem dispersão máxima igual a 4, 10 e 18, respectivamente. As amostras A, B e C apresentam um maior número de observações mais distantes da média, enquanto nas amostras D, E e F ocorre um maior número de observações concentradas em torno da média. Torna-se interessante que haja uma definição a qual use todas as observações e que seja um pequeno valor quando as observações se aproximam da média e grande quando estas são espaçadas.

4 MEDIDAS DE DISPERSÃO Por fim considere os dados destas duas amostras: Amostra A: 5, 6, 8, 10, 12, 14, 15 Amostra B: 105, 106, 108, 110, 112, 114, 115 A dispersão (Y7-Y1) é igual nas duas amostra e, portanto, independe do tamanho dos números.

5 MEDIDAS DE DISPERÇÃO O critério geralmente utilizado é aquele que mede a concentração dos dados em torno da média, e algumas medidas são as mais usadas: desvio médio, variância, desvio padrão e Coeficiente de Variação. Ex: 3, 4, 5, 6, 7 (média 5), os desvios x i -x, são: -2, -1, 0, 1,2. 1, 3, 5, 7, 9 (média 5), os desvios x i -x, são: -4, -2, 0, 2, 4. É fácil observar que a soma dos desvios é igual a zero, o que torna inviável esta medida. As opções são: a)Considerar o total dos desvios em valor absoluto (módulo) ou, b)Considerar o total dos quadrados dos desvios. Assim teríamos: Para a amostra: 3, 4, 5, 6, 7 = = 6 (a) 2 = = 10 (b)

6 DESVIO MÉDIO O desvio médio (DM) refere-se à média dos desvio em valor absoluto, como na fórmula a seguir, aplicada a amostra 3, 4, 5, 6, 7. DM(x) = /n, usando o exemplo anterior DM(x) = 6/5 = 1,2 Para a amostra 1, 3, 5, 7, 9 teríamos: DM(x) = /n, DM(x) = 12/5 = 2.4 Baseado nos dados, pode-se dizer que a primeira amostra é mais homogênea.

7 VARIÂNCIA A medida que contempla os aspectos apresentados e que é mais utilizada é a Variância. A variância é representada por dois símbolos: 2 (letra grega sigma) para população e s 2 para uma amostra. As fórmulas para a variância da população e da amostra são apresentadas abaixo. População: 2 = 2 /n Amostra: s 2 = 2 /n-1, O denominador n-1 tem o propósito de tornar a variância da amostra a estimativa da variância da população. N-1 é conhecido como grau de liberdade e refere-se ao número de somas independentes lineares numa soma de quadrados. A variância é uma medida que expressa um desvio quadrático médio. A unidade da variância é portanto o quadrado dos dados originais. Ex: para dados expressos em centímetros a variância será expressa em centímetros quadrados.

8 VARIÂNCIA Para as amostras 3, 4, 5, 6, 7 e 1, 3, 5, 7, 9 As variâncias seriam: S 1 2 = (3-5) 2 + (4-5) 2 + (5-5) 2 + (6-5) 2 + (7-5) 2 /4 S 1 2 =2,5 S 2 2 = (1-5) 2 + (3-5) 2 + (5-5) 2 + (7-5) 2 + (9-5) 2 /4S 2 2 =10 A amostra 3, 4, 5, 6, 7 é mais homogênea.

9 VARIÂNCIA Média = (0*4)+(1*5)+(2*7)+(3*3)+(5*1))/20=1,65 DM(x) = 4*(0-1,65) + 5* (1-1,65) + 7* (2-1,65) + 3* (3-1,65) + 1* (5-1,65)/20 = 0,98 Variância S 2 = 4*(-1,65) 2 + 5* (-0,65) 2 + 7* (0,35) 2 + 3* (1,35) 2 + 1* (3,35 )2 /19 = 1,6

10 DESVIO PADRÃO Sendo a variância uma medida que expressa um desvio quadrático médio, esta pode causar alguns problemas de interpretação. Para evitar isto, costuma-se usar o desvio padrão, que é definido como a raiz quadrada positiva da variância. Desta forma, tem-se uma medida de variabilidade expressa na mesma unidade dos valores do conjunto de dados. O desvio padrão (, para população e s para amostras) pode ser calculado através das seguintes fórmulas: = e s = O DESVIO PADRÃO DAS AMOSTRAS 3, 4, 5, 6, 7 e 1, 3, 5, 7, 9 seria: S1= =1,58 S2= =3,16

11 COEFICIENTE DE VARIAÇÃO A variação ou dispersão real, determinada a partir do desvio padrão, ou qualquer outra medida de dispersão, é denominada dispersão absoluta. Entretanto, uma variação ou dispersão de 10 cm, na medida de uma distância de m, é inteiramente diferente, quanto ao efeito, da mesma variação em uma distância de 20 cm. A medida desse efeito é proporcionada pela dispersão relativa, definida por: Dispersão relativa = Dispersão absoluta/média Se a dispersão absoluta é o desvio padrão s e a média é a aritmética, a dispersão relativa é denominada Coeficiente de Variação ou de Dispersão. CV=

12 COEFICIENTE DE VARIAÇÃO O coeficiente de variação é geralmente expresso em percentagem. O C.V. é independente das unidades adotadas. Por essa razão, é vantajosa para a comparação de distribuições cujas unidades podem ser diferentes. Uma desvantagem do C.V. é que ele deixa de ser útil quando a média esta próximo de zero. Baixa dispersão: CV 15% Média dispersão: CV 15-30% Alta dispersão: CV 30%

13 ERRO PADRÃO DA MÉDIA (S x ) Quando se obtém uma amostra aleatória de tamanho n, estima-se a média populacional. É bastante intuitivo supor que se uma nova amostra aleatória for realizada a estimativa obtida será diferente daquela primeira. Desta forma, reconhece-se que as médias amostrais estão sujeitas à variação e formam populações de médias amostrais, quando todas as possíveis amostras são retiradas de uma população. O erro padrão analisa a variabilidade de uma média

14 Erro padrão Fornece um mecanismo de medir a precisão com que a média populacional foi estimada

15 Exercícios Dada a tabela abaixo, calcule: Desvio médio, Variância, Desvio padrão, Coeficiente de variação e erro padrão da média


Carregar ppt "MEDIDAS DE DISPERSÃO Medidas de tendência central fornecem um resumo parcial das informações de um conjunto de dados. A necessidade de uma medida de variação."

Apresentações semelhantes


Anúncios Google