A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

CQ028 Físico-Química Geral Profa. Liliana Micaroni 1º semestre de 2014.

Apresentações semelhantes


Apresentação em tema: "CQ028 Físico-Química Geral Profa. Liliana Micaroni 1º semestre de 2014."— Transcrição da apresentação:

1 CQ028 Físico-Química Geral Profa. Liliana Micaroni 1º semestre de 2014

2

3

4 Bibliografia: P.W. Atkins “Físico-Química”, ed. LTC. P. Atkins “Princípios de Química”, ed. Bookman. J.C. Kotz “Química Geral e reações químicas” J. E. Brady “Química Geral”, ed. LTC. J.B. Russel “Química Geral”, ed. Pearson.

5 As propriedades dos gases O gás perfeito Um gás é um conjunto de moléculas (ou átomos) em movimento permanente e aleatório, com velocidades que aumentam quando a temperatura se eleva. Um gás é diferente de um líquido por ter as moléculas muito separadas umas das outras. O estado do gás O estado físico de uma amostra de uma substância se define por suas propriedades físicas. O estado do gás puro fica definido pelos valores de volume que ocupa, V, quantidade de substância, n, pressão, p e temperatura,T.

6 Pressão SI: Pascal (Pa) 1Pa = 1Nm Pa (1 bar): pressão padrão p 0 1N = 1 Kgms -2 1 Pa = 1 Kgm -1 s -2

7 Medida de pressão Barômetro (Torricelli) : mede a pressão exercida pela atmosfera Exemplo (no quadro) 1 atm = 760 mmHg = 760 torr

8 Manômetro: mede a pressão de uma amostra de gás no interior de um recipiente.

9 Temperatura Mudança de estado físico: resultado de fluxo de energia, na forma de calor, de um corpo para outro A temperatura, T, é a propriedade que nos informa o sentido deste fluxo de energia Fronteiras que separam 2 corpos: Fronteira diatérmica (permeável ao calor) energia A →B T (A) > T (B) até Equilíbrio térmico Fronteira adiabática (não permeável ao calor)

10 Lei zero da termodinâmica Se A está em equilíbrio térmico com B e se B está em equilíbrio térmico com C, então, C também está em equilíbrio térmico com A. Escala Celsius (  ): temperatura determinada por: -comprimento da coluna de líquido no capilar em contato com gelo em fusão: 0 da escala -comprimento da coluna de líquido no capilar em equilíbrio com água em ebulição. A diferença entre os dois comprimentos é dividida em 100 partes iguais e cada parte é um “grau”  ( o C) Escala de temperatura termodinâmica, T, dada em Kelvin, K

11 As leis dos gases Equação de estado de um gás a pressões baixas foi elaborada pela combinação de várias leis empíricas: As leis empíricas dos gases A lei de Boyle O volume de uma quantidade fixa de gás diminui quando a pressão sobre ele aumenta, a T constante

12 Volume diminui e mais moléculas colidem com as paredes, em um determinado tempo

13 Isotermas Lei de Boyle falha em altas pressões

14 A Lei de Charles Para uma quantidade fixa de gás sob pressão constante, o volume varia linearmente com a temperatura Isóbaras V (0) a -273,15 o C (0 na escala Kelvin)

15 O princípio de Avogadro O volume de uma amostra de gás é proporcional à quantidade de matéria (ao número de mol) presente e que a constante de proporcionalidade é independente da identidade do gás A pressão de um gás tende a zero quando sua temperatura tende a zero (escala absoluta, Kelvin)

16 A lei do gás ideal (gás perfeito) constantes n e T n e V p e T R: constante dos gases ideais, independe da identidade do gás

17 Equação dos gases ideais Um gás que obedece essa equação em quaisquer condições é um gás ideal (gás perfeito) Gás real (gás que se manipula e observa) tem comportamento mais semelhante ao de um gás perfeito quanto mais baixa a pressão, no limite p  0 R é determinada experimentalmente: R = 8,314 J/Kmol = 0,08206 Latm/Kmol = 8,314x10 -2 Lbar/Kmol Exemplo (no quadro)

18 Aplicações da lei do gás ideal -Predizer o volume molar de um gás ideal P e T padrão (SI): 1 bar (10 5 Pa) e 25 o C (298,15 K) V m = 24,79 L/mol 1 atm e 25 o C: V m = 24,47 L/mol CNTP (condições normais de T e p): 0 o C e 1 atm V m = 22,41 L/mol

19 -Lei dos gases combinadas nR=cte Condições iniciais: p1, V1, T1 e condições finais: p2, V2, T2 Exemplos (no quadro) -Determinar a massa molar a partir da densidade -Estequiometria de reações com gases ( exemplos no quadro)

20 Mistura de gases Lei de Dalton: Pressão exercida por uma mistura de gases ideais é a soma das pressões parciais dos gases Pressão parcial de um gás ideal numa mistura é a pressão que o gás exerceria se ocupasse, sozinho, todo volume da mistura Frações molares e pressões parciais Exemplo (no quadro)

21 O movimento molecular Difusão: dispersão gradual de uma substância em outra, como um gás em outro Efusão: Fuga de um gás para o vácuo, através de um orifício

22 Lei de efusão de Graham 2 gases A e B, à T constante: Com experiências efusão em diferentes T: Refinando o modelo de gás:

23 O modelo cinético dos gases Hipóteses: 1-O gás é constituído de moléculas de massa m em movimento aleatório incessante 2-O tamanho das moléculas é desprezível 3-As partículas se movem em linha reta até colidirem 4-As moléculas não interagem umas com as outras, exceto durante as colisões. Modelo cinético de um gás propõe que não há força de atração e repulsão entre as moléculas do gás ideal, exceto durante as colisões e nos permite obter a relação quantitativa entre pressão e velocidade média das moléculas

24 ou P: pressão V: volume do recipiente N: número total de moléculas M:massa molar das moléculas n: quantidade de matéria de moléculas de gás C: raiz quadrada da velocidade quadrática média das moléculas termo PV ≈ lei gás ideal Modelo cinético dos gases é consistente com lei do gás ideal e fornece expressão para c.

25 A distribuição de velocidades de Maxwell

26 Os gases reais Os gases reais exibem desvios em relação à lei dos gases ideais em virtude das interações moleculares ou forças intermoleculares (atrações e repulsões entre moléculas. Desvios mais notáveis: p elevadas e T baixas

27

28 Liquefação dos gases

29 A Equação de estado dos gases reais Equação de Van der Waals a e b: constantes de van der Waals (características de cada gás e independe de T) Interações repulsivas entre as moléculas do gás são levadas em conta: volume de cada molécula não é nulo, cada qual se movimenta num volume V-nb, menor que o volume V ocupado pelo gás. A parcela nb é ~ o volume total ocupado pelas moléculas

30

31 Exercícios 2-A combustão do gás butano (C 4 H 10 ) no ar produz CO 2 e H2O. a) escreva a equação balanceada b) quantos mol de C 4 H 10 são necessários para formar 11,6 mols de CO 2 ? c) Quantos gramas de água são formados a partir de 2,69 mols de C 4 H 10 ? d) Qual o volume, nas CNTP, de CO 2 produzido a partir de 13 kg de butano? R: b) 2,9 mol; c) 242g d) 20,1x10 3 L 1-Num certo processo industrial, o nitrogênio é aquecido a 500 K num vaso de volume constante. Se o gás entra no vaso a 100 atm e 300 K, qual será a sua pressão na temperatura de trabalho, se o seu comportamento for o de um gás perfeito?

32 3- Considere a reação abaixo. Qual o volume (em cm 3 ) de H 2, medidos nas CNTP, que serão liberados quando 0,150 g de Al forem dissolvidos? 2 Al (s) + 2 OH - (aq) + 2 H 2 O (l)  3 H 2 (g) + 2 AlO 2 - (aq) 4-O ar é usado como fonte de reagentes em muitos processos químicos e físicos: o oxigênio é usado para a combustão e respiração e o nitrogênio é usado como um material inicial para a produção de amônia. Uma certa amostra de ar seco de massa total 1,00 g consiste quase completamente em 0,76 g de N 2 e 0,24 g de O 2. Calcule as pressões parciais destes gases quando a pressão total é 1,00 atm. R: p N2 =0,78 atm e p O2 = 0,22 atm


Carregar ppt "CQ028 Físico-Química Geral Profa. Liliana Micaroni 1º semestre de 2014."

Apresentações semelhantes


Anúncios Google