A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Ludwig Krippahl, 2007 Programação para as Ciências Experimentais 2006/7 Teórica 4.

Apresentações semelhantes


Apresentação em tema: "Ludwig Krippahl, 2007 Programação para as Ciências Experimentais 2006/7 Teórica 4."— Transcrição da apresentação:

1 Ludwig Krippahl, 2007 Programação para as Ciências Experimentais 2006/7 Teórica 4

2 Ludwig Krippahl, Na aula de hoje... Revisão: function, if, for, while Encontrar o zero de um polinómio Precisão, representação de valores numéricos Encontrar o zero de uma função contínua Encontrar o mínimo de uma função contínua

3 Ludwig Krippahl, Funções Para usar a função Se retorna uma variável: x = funcaoqq(arg1, arg2) Se retorna mais que uma: [x,y,z] = outrafn(arg1, arg2)

4 Ludwig Krippahl, Funções O que o Octave faz funcaoqq – não há nada com este nome em memória. Procura ficheiro funcaoqq.m Nesse ficheiro executa a função

5 Ludwig Krippahl, Funções O que nós fazemos Criamos o ficheiro funcaoqq.m Nesse ficheiro declaramos a função: function res=funcaoqq(arg1,arg2).... endfunction

6 Ludwig Krippahl, Funções function res = funcaoqq( arg1, arg2 ) Indica que é a declaração de uma função.

7 Ludwig Krippahl, Funções function res = funcaoqq( arg1, arg2 ) Nome da variável com o valor a devolver

8 Ludwig Krippahl, Funções function [res1, res2] = funcaoqq( arg1.. Se devolve vários valores, usamos um vector de variáveis

9 Ludwig Krippahl, Funções function res = funcaoqq( arg1, arg2 ) Variáveis (locais) para onde são copiados os valores dados à função como argumentos

10 Ludwig Krippahl, Funções function res = funcaoqq( arg1, arg2 ) endfunction Todas a variáveis declaradas aqui e no corpo da função são locais. Só existem dentro da função e não afectam nem são afectadas por variáveis externas.

11 Ludwig Krippahl, Controlo de execução: if if condição else endif Isto é executado se a condição for verdadeira (não for 0) Isto é executado se a condição for false (0). O else é opcional

12 Ludwig Krippahl, Controlo de execução: while while condição endwhile Executado enquanto a condição for verdadeira (não for 0). É preciso garantir que dentro do ciclo o valor da condição muda, senão o ciclo não acaba...

13 Ludwig Krippahl, Controlo de execução: while for var=vector endfor Esta parte é repetida uma vez para cada valor no vector. A variável var toma cada um dos valores do vector a cada iteração.

14 Ludwig Krippahl, Função: polinomio Polinómio: Y= k 1 + k 2 *x + k 3 *x 2 + k 4 *x 3...

15 Ludwig Krippahl, Função: polinomio Polinómio: Y= k 1 + k 2 *x + k 3 *x 2 + k 4 *x 3... Coeficientes num vector: [ k 1, k 2, k 3, k 4... ]

16 Ludwig Krippahl, Função: polinomio function y=polinomio(coefs,x) xx=x; y=coefs(1); for f=2:length(coefs) y=y+coefs(f)*xx;indentação, torna xx=x*xx;mais legível. endfor endfunction

17 Ludwig Krippahl, Função: polinomio function y=polinomio(coefs,x) xx=x; y=coefs(1); for f=2:length(coefs) y=y+coefs(f)*xx;Erro se x for um xx=x*xx;vector. endfor endfunction

18 Ludwig Krippahl, Função: polinomio function y=polinomio(coefs,x) xx=x; y=coefs(1); for f=2:length(coefs) y=y+coefs(f)*xx;já funciona com xx=x.*xx;vectores endfor endfunction

19 Ludwig Krippahl, Função: polinomio (exemplos) Calcular o valor de y = 2+3x-x 2 para x=3 octave:16> polinomio([2,3,-1],3) ans = 2 Traçar o gráfico de y = 2+3x-x 2 entre -10 e 10: plot(-10:10, polinomio([2,3,-1], -10:10))

20 Ludwig Krippahl, Uma raiz de um polinómio Método da bissecção.

21 Ludwig Krippahl, Uma raiz de um polinómio y = 0.3+x – x 2 + x 3 x =

22 Ludwig Krippahl, Uma raiz de um polinómio Começamos com um intervalo que inclui o zero: [-1,1]

23 Ludwig Krippahl, Uma raiz de um polinómio Começamos com um intervalo que inclui o zero: [-1,1] Os extremos têm sinal diferente: - +

24 Ludwig Krippahl, Uma raiz de um polinómio Dividir ao meio: (-1 +1)/2 = 0

25 Ludwig Krippahl, Uma raiz de um polinómio Calculamos y(0)= 0.3 +

26 Ludwig Krippahl, Uma raiz de um polinómio Calculamos y(0)= 0.3 O intervalo com sinais opostos nos extremos contém o zero +

27 Ludwig Krippahl, Uma raiz de um polinómio + -

28 Ludwig Krippahl, Uma raiz de um polinómio + --

29 Ludwig Krippahl, Uma raiz de um polinómio Quando paramos? Quando o intervalo for pequeno Quando no ponto médio y próximo de 0. Precisão.

30 Ludwig Krippahl, Uma raiz de um polinómio Algoritmo: Dado: x1, x2, precisão Enquanto abs(x2-x1)>precisão repetir ym = valor no ponto médio xm Se abs(ym)

31 Ludwig Krippahl, Representação de números A que precisão podemos ir?

32 Ludwig Krippahl, Representação de números Um número no Octave é representado com 64 bits (double precision): Sinal (+, -) : 1 bit Expoente: 11 bits Mantissa: 52 bits (sinal) mantissa * 2 expoente

33 Ludwig Krippahl, Representação de números Expoente: 11 bits, Mantissa: 52 bits (sinal) mantissa * 2 expoente Máximo valor: x (realmax, e308 ) Precisão (épsilon) x (eps, e-16)

34 Ludwig Krippahl, Representação de números Precisão (épsilon) x (eps, e-16) O menor número que somado a 1 dá um resultado diferente de 1: octave:17> (1+eps)==1 ans = 0 octave:18> (1+eps/2)==1 ans = 1

35 Ludwig Krippahl, Representação de números Importante: Todos os dados no computador são sequências de bits. A memória é limitada (64 bits para os números), por isso a precisão é limitada. Normalmente não há problema, mas atenção aos arredondamentos: octave:20> sqrt(2)^2==2 ans = 0

36 Ludwig Krippahl, O zero de uma função Suponhamos que uma função y=f(x) pode ser especificada por um vector de parâmetros (constantes) e pelo nome. e.g: function y=polinomio(coefs,x)

37 Ludwig Krippahl, O zero de uma função A nossa função genérica será. y = nome(params,x) Para a função que encontra o zero temos que enviar o nome, os parâmetros, o intervalo, e a precisão. function xm=zerofn(func,params,x1,x2,prec)

38 Ludwig Krippahl, O zero de uma função Para avaliar a função func usamos a função do Octave feval: feval(nome,arg1,arg2, arg3) é o mesmo que nome(arg1, arg2, arg3) octave:22> sin(1) ans = octave:23> feval("sin",1) ans =

39 Ludwig Krippahl, O zero de uma função Em vez de: y1=polinomio(coefs,x1); y2=polinomio(coefs,x2); Fica y1=feval(func,params,x1); y2=feval(func,params,x2);

40 Ludwig Krippahl, O zero de uma função Para calcular uma raíz do polinómio: z=zerofn("polinomio",coefs,-1,1,0.0001)

41 Ludwig Krippahl, O mínimo de uma função Método da razão dourada

42 Ludwig Krippahl, O mínimo de uma função Tal como encurralámos a raiz num intervalo, vamos fazer o mesmo com o mínimo, mas precisamos de 3 pontos: a b c

43 Ludwig Krippahl, O mínimo de uma função Se x 1

44 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

45 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

46 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

47 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

48 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

49 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

50 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

51 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

52 Ludwig Krippahl, O mínimo de uma função O algoritmo é (novamente) partir os intervalos, testar, e repetir até que seja suficientemente pequeno x1 x2 x3

53 Ludwig Krippahl, O mínimo de uma função Guardar sempre os 3 pontos consecutivos em que o do meio é menor que os extremos. x1 x2 x3

54 Ludwig Krippahl, O mínimo de uma função Como dividir o intervalo: O ideal é manter as proporções. Dividir ao meio não é bom. x1 x2 x3

55 Ludwig Krippahl, O mínimo de uma função Como dividir o intervalo: x1 x2 x3 x4 x5

56 Ludwig Krippahl, O mínimo de uma função Como dividir o intervalo: Escolher o ponto novo no intervalo maior e Partir pela razão dourada: (a+b)/a = a / b a= (a+b) b= ( ) (a+b)

57 Ludwig Krippahl, O mínimo de uma função Detalhes: Escolher o lado maior if abs(x1-xm)>abs(x2-xm) false, lado maior xm x2 x1 x2 xm

58 Ludwig Krippahl, O mínimo de uma função Detalhes: Calcular novo ponto xn (c1=0.618; c2=1-c1) xn=c1*xm+c2*x2 x1 x2 xmxn

59 Ludwig Krippahl, O mínimo de uma função Detalhes: Calcular yn=f(xn) yn=feval(func,params,xn); x1 x2 xmxn

60 Ludwig Krippahl, O mínimo de uma função Detalhes: se yn

61 Ludwig Krippahl, O mínimo de uma função Detalhes: caso contrário xn será o novo x2 x1 x2 xmxn

62 Ludwig Krippahl, O mínimo de uma função Se o lado maior for entre x1 e xm, mesma coisa, mas trocando o x1 e o x2...

63 Ludwig Krippahl, O mínimo de uma função Como podemos seguir o cálculo: guardar o xn e yn num vector (pontos). function [xm,pontos]=minfnpts(func,params,x1,xm,x2,prec)... guardar os 3 pontos iniciais: y1=feval(func,params,x1); y2=feval(func,params,x2); ym=feval(func,params,xm); pontos=[x1,x2,xm;y1,y2,ym];

64 Ludwig Krippahl, O mínimo de uma função Como podemos seguir o cálculo: guardar o xn e yn num vector (pontos). while abs(x2-x1)>prec... durante o ciclo guardar cada xn, yn: pontos=[pontos,[xn;yn]];

65 Ludwig Krippahl, O mínimo de uma função Como podemos seguir o cálculo: guardar o xn e yn num vector (pontos). Depois de chamada a função, fazer o plot: coefs=[0.3,-5,1] v=-10:10; clearplot plot(v,polinomio(coefs,v));traça o polinómio [x,p]=minfnpts("polinomio",coefs,-10,0,10,0.001) hold on plot(p(1,:),p(2,:),"+")traça os pontos

66 Ludwig Krippahl, O mínimo de uma função

67 Ludwig Krippahl, Mais informação: Numerical Recipes Raiz: 9.1 Mínimo: 10.1

68 Ludwig Krippahl, Próxima aula: Apresentação do trabalho prático: A partir de uma lista de strings com equações de reacções químicas, constantes de equilíbrio, e concentrações iniciais, calcular as concentrações de equilíbrio de todas as espécies tendo em conta todas as reacções. Revisões function, if, while, for: muito importante ter isto bem sabido...

69 Ludwig Krippahl, Dúvidas...


Carregar ppt "Ludwig Krippahl, 2007 Programação para as Ciências Experimentais 2006/7 Teórica 4."

Apresentações semelhantes


Anúncios Google