A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Termometria Aula 03.

Apresentações semelhantes


Apresentação em tema: "Termometria Aula 03."— Transcrição da apresentação:

1 Termometria Aula 03

2 Objetivos da Termodinâmica
A Termodinâmica estuda as propriedades macroscópicas dos sistemas materiais e suas relações, mediantes uma descrição que considera as diferentes formas de manifestação e interconversão de Energia.

3 Estado Termodinâmico O estado de um sistema é definido pela sua descrição completa e inequívoca baseada na enumeração de suas propriedades macroscópicas. Quando um sistema está em equilíbrio suas propriedades termodinâmicas não variam com o tempo, diz-se que ele está em um determinado Estado. O estado de qualquer sistema pode ser descrito por algumas variáveis termodinâmicas. Quanto mais complexo o sistema, maior o número de variáveis.

4 Sistema Termodinâmico
CONCEITOS FUNDAMENTAIS Sistema Termodinâmico A parte do universo que está sob consideração. Qualquer coisa em questão é chamado de Sistema. Uma classificação útil dos sistema termodinâmicos é baseada na natureza da Fronteira e as grandezas que fluem através dele, como matéria, energia, trabalho, calor e entropia. Tudo que se situa fora do sistema termodinâmico é chamado MEIO ou VIZINHANÇA.

5 CONCEITOS FUNDAMENTAIS
Sistema Fechado É o sistema termodinâmico no qual não há fluxo de massa através das fronteiras que definem o sistema. não existe qualquer interação entre o sistema termodinâmico e a sua vizinhança. Ou seja, através das fronteiras não ocorre fluxo de calor, massa, trabalho etc.

6 CONCEITOS FUNDAMENTAIS
Sistema Aberto É o sistema termodinâmico no qual há fluxo de calor, massa ou trabalho através das fronteiras que definem o sistema.

7 CONCEITOS FUNDAMENTAIS
CALOR Energia que se transfere de um corpo para outro, quando entre eles existir uma diferença de temperatura, até atingir o Equilíbrio Térmico (temperaturas iguais).

8 TEMPERATURA CONCEITOS FUNDAMENTAIS
Medida do grau de agitação das moléculas

9 LEI ZERO DA TERMODINÂMICA
EQUILÍBRIO TÉRMICO Dois corpos que estão em equilíbrio térmico com um terceiro corpo estão em equilíbrio térmico entre si. a b c Enquanto houver transferência de calor as propriedades de b e de c modificam-se.

10 CONSTRUÇÃO DE UMA ESCALA QUALQUER
X Y X1 X2 Y1 Y2

11 Escalas Termométricas

12 Propriedades Termodinâmicas
Propriedade Extensiva Chamamos de propriedade extensiva àquela que depende do tamanho (extensão) do sistema ou volume de controle. Assim, se subdividirmos um sistema em várias partes (reais ou imaginárias) e se o valor de uma dada propriedade for igual à soma das propriedades das partes, esta é uma variável extensiva. Por exemplo: Volume, Massa, etc.

13 Propriedades Termodinâmicas
Propriedade Intensiva Ao contrário da propriedade extensiva, a propriedade intensiva, independe do tamanho do sistema. Exemplo: Temperatura, Pressão etc.

14 Propriedades Termodinâmicas
Propriedade Específica Uma propriedade específica de uma dada substância é obtida dividindo-se uma propriedade extensiva pela massa da respectiva substância contida no sistema. Uma propriedade específica é também uma propriedade intensiva do sistema. Exemplo de propriedade específica: onde: M é a massa do sistema, V o respectivo volume e U é a energia interna total do sistema.

15 Mudança de Estado de um Sistema Termodinâmico
Quando qualquer propriedade do sistema é alterada, por exemplo; Pressão, Temperatura, Massa, Volume, etc. dizemos que houve uma mudança de estado no sistema termodinâmico.

16 Processos Termodinâmicos
O caminho definido pela sucessão de estados através dos quais o sistema passa é chamado processo. Reversível: H2O(s)  H2O(l) Irreversível: Mesmo que o sistema retorne ao estado inicial é impossível fazer com que o meio ambiente retorne às condições de partida.

17 Processos Termodinâmicos
Processo Isobárico (pressão constante) Processo Isotérmico (temperatura constante) Processo Isocórico ou Iisométrico (volume constante) Processo Isoentálpico (entalpia constante) Processo Isoentrópico (entropia constante) Processo Adiabático (sem transferência de calor)

18 Ciclo Termodinâmico Quando um sistema (substância), em um dado estado inicial, passa por certo número de mudança de estados ou processos e finalmente retorna ao estado inicial, o sistema executa um ciclo termodinâmico. Deve ser feita uma distinção entre ciclo Termodinâmico, descrito acima, e um ciclo mecânico. Um motor de combustão interna de quatro tempos executa um ciclo mecânico a cada duas rotações. Entretanto o fluido de trabalho não percorreu um ciclo termodinâmico dentro do motor, uma vez que o ar e o combustível são queimados e transformados nos produtos de combustão, que são descarregados para a atmosfera.

19 Conservação da Energia
A energia em um sistema pode manifestar-se sob diferentes formas como calor e trabalho. A energia pode ser inter convertida de uma forma para outra, mas a quantidade total de energia do universo, isto é, sistema mais meio externo, conserva-se. A ENERGIA INTERNA DE UM SISTEMA ISOLADO É CONSTANTE

20 Conservação da Energia
Variação na energia interna do sistema Calor trocado pelo sistema Trabalho realizado pelo sistema

21 Transferência de Calor
Transferência de energia devida a uma diferença de temperatura entre o sistema e as vizinhanças (Q). UNIDADE: [J] = kg.m2s-2

22 Transferência de Trabalho
É uma transferência de energia que pode causar um movimento contra uma força que se opõe a esse movimento (W). UNIDADE: [J] = kg.m2s-2

23 Processos de Transferência
sistema W Fornece energia W < 0 Retira W > 0 q calor q > 0 q < 0

24 Tipos de Trabalho trabalho Força motriz mecânico Força física (N)
Eixo deferencial Torque (N) hidráulico Pressão (Pa) elétrico Voltagem (V) químico Concentração (molL-1)

25 Trabalho Mecânico Unidade de calor:
1 caloria = 1cal = calor necessário para elevar a temperatura de um grama de água em um grau Celsius (de 14,0ºC a 15,0ºC). 1cal = 4,18J

26 Processos Termodinâmicos


Carregar ppt "Termometria Aula 03."

Apresentações semelhantes


Anúncios Google