A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Fontes de Campo Magnético Uma carga parada cria um campo elétrico e este exerce força sobre uma carga parada. Uma carga em movimento cria um campo magnético.

Apresentações semelhantes


Apresentação em tema: "Fontes de Campo Magnético Uma carga parada cria um campo elétrico e este exerce força sobre uma carga parada. Uma carga em movimento cria um campo magnético."— Transcrição da apresentação:

1 Fontes de Campo Magnético Uma carga parada cria um campo elétrico e este exerce força sobre uma carga parada. Uma carga em movimento cria um campo magnético e ele exerce força sobre uma carga em movimento. Movimento é relativo, mas cuidado.

2 Campo Magnético de uma Carga em Movimento O vetor unitário liga a carga com o ponto em que queremos calcular o campo.

3 A carga em movimento também produz campo elétrico.

4 Linhas de força do campo magnético circulam a direção da velocidade.

5 Campo magnético de um Elemento de Corrente Existe um principio de superposição dos campos magnéticos. Então, iremos começar pelo campo magnético produzido por um pequeno pedaço de condutor. Neste pequeno pedaço há uma carga (n é o número de cargas em movimento por unidade de volume):

6 Campo Magnético de um Elemento de Corrente

7

8 Biot-Savart Law The Biot-Savart Law relates magnetic fields to the currents which are their sources. In a similar manner, Coulomb's law relates electric fields to the point charges which are their sources. Finding the magnetic field resulting from a current distribution involves the vector product, and is inherently a calculus problem when the distance from the current to the field point is continuously changing. magnetic fieldscurrentsCoulomb's lawelectric fieldsvector product

9 Em nosso estudo da eletrostática, observamos que a lei de Coulomb, descrevendo o campo elétrico de cargas puntiformes foi simplesmente o modo pelo qual as observações experimentais relativas a forças eletrostáticas em corpos carregados poderiam ser melhor resumidas. A situação é a mesma em relação a campos magnéticos produzidos por correntes estacionárias. Não há meio de se deduzir uma expressão para estes campos; tudo o que podemos fazer é observar as forças magnéticas criadas por correntes reais experimentalmente e então tentar achar uma expressão matemática para o campo magnético que esteja de acordo com os resultados de todas as observações. Foi justamente desta maneira que a lei de Biot-Savart, a qual dá o campo magnético criado pelo fluxo de corrente em um condutor, foi descoberta. A lei de Biot-Savart diz-nos que o elemento de indução magnética dB associado a uma corrente i em um segmento de um fio condutor descrito por dl é: a- dirigido em uma direção perpendicular ao dl e ao vetor posição r do segmento do condutor ao ponto P, no qual o campo está sendo medido, como está ilustrado na Fig. 2 ; b- diretamente proporcional ao comprimento dl do segmento e à corrente i que ele carrega; c- inversamente proporcional em módulo ao quadrado da distância r entre o elemento de corrente e o ponto P. d- proporcional ao seno do ângulo entre os vetores di e r.

10 É evidente que a equação (6) concretiza todos os resultados estabelecidos acima, pois ela nos diz que o vetor dB é perpendicular a dl e a r e tem um módulo proporcional a idlsen /r 2, que é exatamente o observado. Nós nos referimos anteriormente ao fato de que as forças magnéticas exibem uma dependência do inverso do quadrado da distância, como as forças de Coulomb entre cargas elétricas. Isto é claramente considerado na equação (6).

11 Infelizmente a lei de Biot-Savart acima, dá-nos apenas o elemento diferencial da indução magnética B, então para determinar B é necessários somar a contribuição de todos os elementos infinitesimais dl. Esta soma infinita é denonimada de integral, conceito este que será discutido em outra oportunidade. Assim a equação (7), neste limite, assume a forma,

12

13 Campo Magnético de um Condutor Retilíneo Transportando uma Corrente

14 Cada vetor infinitesimal tem direção e sentido para dentro da folha. Podemos, então, somar sem problemas.

15 Falar sobre linhas de E e de B e sobre integral de área =0

16

17 Força entre Condutores Paralelos Ic é corrente no fio superior e I no inferior. F é a força no superior. Vai ser orientada de cima para baixo.

18 Força entre Condutores Paralelos

19 Um ampére é a corrente invariável que, quando percorre dos fios retilíneos infinitos paralelos separados no vácuo por uma distância de um metro, produz sobre cada metro do condutor uma força exatamente igual a Newtons.

20 Campo Magnético de uma Espira Circular

21 Em 11 de setembro de 1820 Ampere ouviu a respeito da descoberta de Hans Christian Oersted de que uma agulha imantada sofre a a ç ão de uma corrente el é trica. Em 18 de setembro de 1820 ele apresentou um artigo à academia contendo uma exposi ç ão bem mais completa deste e de outros fenômenos relacionados.

22 Lei de Ampère Para um fio condutor:

23 Lei de Ampère Percurso qualquer: Em b, parte do fio, a variação total deste ângulo para um caminho sem fio é zero e a integral é nula. Melhor escrever:

24 Lei de Ampère Generalizada Basicamente, quando um capacitor esta sendo carregado a corrente na superfície de uma de suas placas é nula, o que, pela Lei de Ampere, levaria a um campo magnético nulo, mas a corrente no fio que leva ao capacitor não é nula, isto cria a situação em que o campo é e não é nulo ao mesmo tempo, ou no mínimo é absurdamente descontínuo.

25 Supõe-se uma pseudocorrente i D na região entre as placas:

26 Bate com o valor medido.

27 29.1, 29.3, 29.13, 29.14, 29.15, 29.24, 29.37, 29.38, 29.44, 29.45, 29.49, 29.50,29.56, 29.60, 29.69, 29.70


Carregar ppt "Fontes de Campo Magnético Uma carga parada cria um campo elétrico e este exerce força sobre uma carga parada. Uma carga em movimento cria um campo magnético."

Apresentações semelhantes


Anúncios Google