A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Aprendizado de Máquinas. Aprendendo de Observações AMBIENTEAMBIENTE Sensores Efectores Critica Aprendizado Gerador Performance Feedback Objetivos de aprendizado.

Apresentações semelhantes


Apresentação em tema: "Aprendizado de Máquinas. Aprendendo de Observações AMBIENTEAMBIENTE Sensores Efectores Critica Aprendizado Gerador Performance Feedback Objetivos de aprendizado."— Transcrição da apresentação:

1 Aprendizado de Máquinas

2 Aprendendo de Observações AMBIENTEAMBIENTE Sensores Efectores Critica Aprendizado Gerador Performance Feedback Objetivos de aprendizado Modelo de Aprendizado

3 Aprendizado " A percepção pode ser usada para atuar e para melhorar a habilidade do agente no futuro. " O aprendizado ocorre como resultado da interação do agente e o mundo, e das observações deste agente.

4 Pesquisas em Aprendizado " Que componentes do elemento de performance devem ser melhorados. " Que representação é usada para estes componentes. " Que feedback esta disponivel. " Que informação a priori esta disponivel.

5 Componentes de Performance " Mapeamento do estado corrente para ações. " Um meio de inferir propriedades do mundo. " Informações de como o meio evolue " Informações das consequências das ações do agente " Estados desejaveis do mundo " Objetivos para atingir determinados estados.

6 Representação do componente Diferentes formas de representar conhecimento levam a diferentes métodos de aprendizado. Ex: redes neurais, algoritmos géneticos, formulas lógicas....

7 Feedback Disponivel E, S ; aprendizado supervisionado E, ~S ; aprendizado reforçado E ; aprendizado não supervisionado

8 Aprendizado Inductivo F(x) X F(X)

9 Aprendizado Inductivo Assumindo que o sistema é modelado por um uma função f, desconhecida; Dado uma coleção de exemplos de f, retornar a função h que se aproxima a f, a função h é denominada hipoteses.

10 Bias

11 Tarefa de Classificação

12 Árvores de Decisão Alemanha Inglaterra França País NãoSim Não Idade > 25 < 25

13 Árvores de Decisão Classificação; baseado num conjunto de atributos Cada nó interno corresponde a um teste sobre os valores dos atributos; Os arcos são rotulados com os valores possiveis do teste; Cada folha na árvore especifica a classificação.

14 Esperar por uma mesa num restaurante Decidir que propriedades ou atributos estão disponiveis para descrever os exemplos do dominio; Existem alternativas?, existe um bar no local?, dia da semana, estado da fome, estado do restaurante, preço, chuva, reserva, tipo de comida, tempo de espera....

15 Esperar por uma mesa? Alternati va Fome Reservas Dia Alternat. Bar Chove Não Sim Não Sim Vazio Medio Cheio Estado rest. Esper a Não Sim > Não Sim Não Sim Não Sim NãoSim Não Sim Não Sim Semana Final

16 Expressividade das Árvores de decisão Conjunto de implicações: da raiz até uma folha ex: r Estado(r,cheio) spera(r,0-10) fome(r,não) => Esperar. As árvores de decisão estão limitadas a falar de um objeto único. Linguagem proposicional, cada teste num atributo é uma proposição rr, Perto(rr,r),Preço(r,p),Preço(rr,pp),Menor(pp,p)

17 Inducindo Árvores a partir de Exemplos Um exemplo é descrito pelo valor dos atributos e o valor do predicado objetivo (classificação). Solução trivial; uma folha para cada exemplo; memorização das observações sem extrair padrão Extrair padrões significa descrever um grande número de casos de uma maneira concisa. Ockham Razor: A melhor hipoteses é a mais simples consistente com todas as observações.

18 Indução de Árvores Encontrar a árvore de decisão menor é um problema intratavel; Solução: Heuristicas simples, boas árvores Ideia básica Testar o atributo mais importante primeiro Separar o maior número de casos, a cada vez. Classificação correta com o menor número de teste.

19 Indução de Árvores Uma árvore de decisão é construída de forma "top-down", usando o princípio de dividir- para-conquistar. Inicialmente, todas as tuplas são alocadas à raiz da árvore. Selecione um atributo e divida o conjunto. Objetivo- separar as classes Repita esse processo, recursivamente.

20 Conjunto de Treinamento

21 Seleção do Atributo Estad o Vazio Medi o Cheio F I T B Tipo

22 Estado Vazio Medio Cheio Fome Sim Não

23 Algoritmo

24 Árvore Gerada Estado Não Sim Fome Tipo sex/sab Não Sim Vazio Medio Cheio Não Sim Não Sim F I T B

25 Árvore Os dados do exemplo foram gerados com a árvore inicial; A árvore gerada é diferente da original; O algoritmo olha os exemplos!!!; Performance do algoritmo: é bom se produz uma hipoteses que é boa para predizer a classificação de exemplos não vistos anteriormente. Conjunto de teste.

26 Métodologia de Aprendizado Colecione um conjunto grande de exemplos; Divida em 2 conjuntos disjunto: –conjunto de treinamento –conjunto de teste Use o algoritmo de aprendizado com o conj. treinamento para gerar a hipoteses H. Calcule a percentagem de exemplos no conjunto de teste que estão corretamente classificados por H. Repita os passos 2 a 4 para diferentes conjuntos

27 Conjunto de treinamento O resultado é um conjunto de dados que pode ser processado para dar a media da qualidade da predição.

28 Curva de Aprendizado Tamanho do conjunto de treinamento % de corretos no conjunto de teste 100

29 Uso pratico de Árvores Lógica proposicional Tomada de decisões, classificação de objetos Planos de vôos Equipamentos para separação de gasolina e oleo.

30 Teoria da Informação Escolha do melhor atributo? Árvore de profundidade mínima Atributo perfeito divide os exemplos em conjuntos que são + e -. –ex: estado do restaurante x tipo de restaurante Quantidade de informação esperada de cada atributo (Shanon & Weaver, 1949).

31 Teoria da Informação Dada uma situação na qual há N resultados alternativos desconhecidos, quanta informação você adquire quando você sabe o resultado? –Resultados equiprováveis: –Lançar uma moeda, 2 resultados, 1 bit de informação –1 ficha dentre 8, 8 resultados, 3 bits de informação –1 ficha dentre 32, 32 resultados, 5 bits de informação –N resultados equiprováveis: Info = log 2 N bits

32 Teoria da Informação Probabilidade de cada resultado p=1/N, –Info = - log 2 p bits Resultados não equiprováveis: –ex: 128 fichas, 127 pretas e 2 branca. É quase certo que o resultado de extrair uma ficha será uma ficha preta. Existe menos incerteza removida, porque há menos dúvida sobre o resultado.

33 Função de Shannon Info = - i=1,N p i log 2 p i bits Em vários algoritmos de árvore de decisão, a seleção de atributos é baseada nesta teoria. –Ex: ID3, C4.5, C5.0 [Quinlan93], [Quinlan96].

34 Árvores e Teoria da Informação Para um dado exemplo qual é a classificação correta? –Uma estimação das probabilidades das possiveis respostas antes de qualquer atributo ser testado é: –Proporção de exemplos + e - no conjunto de treinamento. –I(p/(p+n),n/(p+n))= -p/(p+n)log 2 p/(p+n)- n/(p+n)log 2 n/(p+n)

35 Árvores e Teoria da Informação Testar atributo –Qualquer atributo A divide o conjunto E em subconjuntos E 1,...,E v de acordo com seus valores (v valores distintos). –Cada subconjunto E i possui p i exemplos (+ ) e n i exemplos (-), –I (p i /(p i +n i ),n i /(p i +n i )) bits de informação adicional para responder.

36 Ganho de Informação Um exemplo randomico possui valor i para o atributo com probabilidade (p i +n i )/(p+n) Em media depois de testar o atributo A necessitamos Resta(A)= i=1,v (p i +n i )/(p+n)I(p i /(p i +n i ),n i /(p i +n i )) Ganho(A)= I(p/(p+n),n/(p+n))- Resta(A)

37 Exemplo Estado do restaurante Valores possiveis (vazio, medio, cheio) –Ganho(Estado) = 1-[2/12 I(0,1)+4/12I(1,0)+6/12I(2/6,4/6)] = 0,541 bits –Ganho(tipo)= 1- [2/12I(1/2,1/2)+1/12I(1/2,1/2)+4/12I(2/4,2/4)+4/12 I(2/4,2/4)] = 0 bits

38 Outros Criterios Há vários outros critérios que podem ser usados para selecionar atributos quando construindo uma árvore de decisão Nenhum critério é superior em todas as aplicações. A eficácia de cada critério depende dos dados sendo minerados.

39 Ruido e Overfitting Ex: 2 ou mais exemplos com a mesma descrição e diferentes classificações. –Classificação segundo a maioria –Reportar a estimação das probabilidades de cada classificação. Classificar considerando atributos irrelevantes –ex: jogo de dados, considerar como atributo dia,cor..

40 Overfitting Quando existe um conjunto grande de hipoteses possiveis, devemos ser cuidadosos para não usar a liberdade resultante para encontrar regularidades nos dados. Sugere-se podar a árvore, prevenindo testar atributos que não são claramente relevantes. –Ganho de informação perto de zero –Teste de Significância Estatistica.

41 Teste de Significância Assumir que não existe um padrão nos dados, hipoteses nula. Os dados são analizados para calcular quanto eles desviam-se da ausência perfeita de padrão. Se o grau de desviação é estatisticamente insignificante (5%) Existe uma boa evidência da presença de um padrão nos dados.

42 Teste de Significância As probabilidades são calculadas de uma distribuição estandard da quantidade de desviação que se espera ver devido a uma amostra randomica. Neste caso, a hipoteses nula é que o atributo é irrelevante, e o ganho de informação de uma amostra infinitamente grande seria zero.

43 Probabilidade de Hipotese Nula Uma amostra de tamanho v exiba a desviação observada da distribuição esperada de exemplos + e -. Comparar o número de casos p, n dos esperados ^p i e ^n i ^p i = p(p i +n i )/(p+n); ^n i =n(p i +n i )/(p+n); D = (p i -^p i ) 2 /^p i +(n i -^n i ) 2 /^n i baixo a hipóteses nula, D é distribuído de acordo a X 2 com v-1 graus de liberdade.

44 Cross-Validação A ideia é tentar estimar como a hipoteses atual predizirá. Manter dados de teste, testar performance da predição.

45 Árvores de decisão Falta de dados Atributos multivalorados Atributos continuos


Carregar ppt "Aprendizado de Máquinas. Aprendendo de Observações AMBIENTEAMBIENTE Sensores Efectores Critica Aprendizado Gerador Performance Feedback Objetivos de aprendizado."

Apresentações semelhantes


Anúncios Google