A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

IE733 – Prof. Jacobus Cap. 6 Efeitos em dispositivos de pequenas dimensões. (parte 2)

Apresentações semelhantes


Apresentação em tema: "IE733 – Prof. Jacobus Cap. 6 Efeitos em dispositivos de pequenas dimensões. (parte 2)"— Transcrição da apresentação:

1 IE733 – Prof. Jacobus Cap. 6 Efeitos em dispositivos de pequenas dimensões. (parte 2)

2 6.4 – Perfuração MOS (punchthrough). Na 1 a parte – Efeitos eletrostáticos p/ pequenas dimensões, porém fracos, em nível de não afetar muito o comportamento do transistor. O critério mais usados para observar integridade dos efeitos eletrostáticos (canal curto) é S pouco dependente de V DS e com valor próximo ao L longo S 80 mV/dec (longo) Para o menor dispositivo aceita-se uma variação de alguns % (~ 5 mV/dec). O deslocamento da curva para esquerda quando V DS deve-se ao efeito DIBL. A fig. 6.11b apresenta uma boa característica eletrostática. fig V DS2 > V DS1 V DS1 – cheita V DS2 - tracejada V GS / V DS < 100 mV/V valores típicos aceitáveis.

3 Fig 6.11a, grande dependência de S com V DS – efeito de perfuração MOS É uma caso severo de diminuição de barreira que causa um fluxo de elétrons da fonte para o dreno. A integridade eletrostática é violada Também pode ocorrer quando há o encontro das regiões de depleção da fonte e do dreno, na ausência da região de depleção na porta: - perfuração de superfície (dopagem uniforme) - perfuração de corpo (dopagem maior na superfície)

4 Efeitos de perfuração MOS sobre as curvas características: Perfuração MOS deve ser evitado por construção e não necessita ser modelado em modelos compactos SPICE. fig Fig 6.21 – Assinatura de bulk punchthrough: pouca mudança de S com V DS, porém I DS é fortemente dependente de V DS e independente de V GD na parte inferior da curva caso. Nota: tenho sérias dúvidas quanto a isto! Depende muito da razão entre I DS de corpo e de superfície (e possível fuga de junção)

5

6 Parâmetros de ajuste: –Dopagem no canal (duas implantações) –Profundidade de junção (LDD ou SDE=Sourse/drain extention) –Espessura de óxido de porta

7 6.5 – Saturação da velocidade dos portadores. Em dispositivos de canal curto, nos efeitos já vistos, a porta não tem um controle completo das cargas no canal. Isto indica que o campo paralelo (longitudinal) ao canal não deve ser desprezível quando comparado ao campo transversal. O efeito mais significante provocado E x e que dever ser incluído no cálculo de I DS : eff Defini-se o campo crítico E c : |v d | |E x |, |E x | << E c |v d | |v d | max, |E x | >> E c E c = |v d | max / | v d | max, 5x10 6 – 2x10 7 cm/s (p/ n e p). Em canal longo, E X << E c. Em curto não (usar as duas retas). E cn =8-30x10 3 V/cm; E cp =2-10x10 4 V/cm

8 6.5 – Saturação da veloc. portadores outra relação em uso: Para o cálculo de I DS, assumindo somente corrente por deriva: Assumindo e E C independente do campo longitudinal e integrando:

9 6.5 – Saturação da veloc. portadores Forte influência na curva I DS -V DS : Para o mesmo V GS, atinge-se a saturação para menores valores de V DS !. O espaçamento entre as correntes é proporcional ao incremento de V GS quando o dispositivo apresenta este efeito, ou seja, a corrente de saturação depende linearmente de V GS -V T !!. L efeitos da saturação da veloc. L V DS.

10 6.5 – Saturação da veloc. portadores Exemp. 1 : usando as eq. do cap. 4 e somando o efeito de saturação da veloc. de portadores: Exemp. 2 : dI DS / dV DS = 0: V DS V DS. V DS é menor que o valor V DS sem o efeito. Se L.E c tender ao infinito, V DS =(V GS -V T )/ Exemp. 3 : incluindo os efeitos de modulação (L-lp):

11 6.5 – Saturação da veloc. portadores fazendo L (V DS ) e l p /L << 1: dependência linear com V GS -V T Para altos valores de campos, a carga no canal é aproximadamente uniforme pois elas têm praticamente as mesmas velocidades, Vsat. -Q I C ox (V GS -V T ) Outro efeito observado: A corrente de dreno é independente de L!! Tempo que os portadores levam para atravessar o canal é proporcional a L e a velocidade é aprox. constante (máxima). Carga total no canal também é proporcional a L. a corrente (dQ/dt) é independente de L. Fluxo médio de água saindo de um cano com velocidade constante independe do comprimento do cano Na verdade, a análise acima é simplificada. Canal curto, considerar efeitos bi-dimensionais – mais complexo! Como v dMAX p/ n e p; podemos usar W n ~ W p em CMOS!

12 E m1 > E m2 Para L (1), há uma porção do canal antes do estrangulamento onde a velocidade dos portadores satura. 6.6 – Efeito de portadores quentes. O campo longitudinal aumenta da fonte para o dreno. O pico do campo se dá na junção canal-dreno e depende fortemente de L e V DS. E c campo crítico (Vsat) Para L (2), o campo crítico ~ coincide com o inicio do estrangulamento. A velocidade dos portadores não aumenta devido as colisões, porém a energia cinética randômica aumenta. Uma pequena fração de portadores adquirem uma quantidade de energia alta portadores quentes Em campos > E c :

13 Alguns do elétrons adquirem energia suficiente para produzir ionização por impacto com átomos de silício do cristal, onde são criados novos pares elétron-lacuna avalanche fraca. Elétrons gerados são atraídos para o dreno; Lacunas geradas são puxadas para o substrato, gerando a corrente I DB. Uma fração dos elétrons podem sobrepor a barreira do SiO 2, serem injetados no óxido e coletados pela porta. N it e modifica Q 0,tempo de vida dos dispositivos.

14 6.6 –Portadores quentes I DB I DS I DB é função do campo, ou, excesso V DS -V DS Para um dado V DS e aumentando V GS, I DS e I DB aumentando mais V GS, V DS e (V DS - V DS ) e o campo no dreno Ki de 1 a 3 Vi de 10 a 30V. corrente total de dreno, I D = I DS + I DB I DB é máx em V GS ~ V DS /2

15 6.6 –Portadores quentes B G SD n+n+ n+n+ n Se tox a corrente de porta (efeito de portadores quentes) não é mais desprezível. Porém o limite de tox é definido pelo efeito de tunelamento e não por portadores quentes, pois tox, tensões e campos (escalamento). Para limitar os efeitos por portadores quentes - LDD LDD lightly doped drain Diminuição do campo elétrico máximo. Parte da região de depleção dentro LDD, n + /n entre 10 e 100

16 6.7 – Escalamento. velocidade dos circuitos, quantidade de circuitos por área do chip, efeitos de canal curto, Ajuste do processo de fabricação e das tensões para permitir um funcionamento correto dos dispositivos de dimensões cada vez menores

17 Escalamento simples, todas as dimensões alteradas pelo mesmo fator. Se o campo elétrico mantiver mesma forma de distribuição e magnitude, mantém-se o comportamento de canal longo. Permite aplicar os conceitos desenvolvidos para os dispositivos longos. Por exemplo: Para escalar d por 1/k escalar N A por k e V por 1/k (supondo bi <

18 Dimensões (L,W,tox,dj)1/k Área1/k 2 Densidade de empacotamento (por área)k2k2 Concentração de dopagem, N A K Tensões e V T 1/k Correntes1/k Dissipação de potência (circuito)1/k 2 Dissipação de potência (por área)1 Capacitâncias, C1/k Capacitâncias por área, Ck Cargas, Q1/k 2 Cargas por área, Q1 Intensidade do campo elétrico1 Coeficiente de efeito de corpo, 1/k 1/2 Tempo de atraso, 1/k Figura de mérito (power-delay product)1/k 3 Escalonamento de campo- constante. Quantidade Fator de escala

19 6.7 - Escalonamento Para metais ou poli-silício usados para interconexões: Larguras das linhas 1/k Espessura das linhas 1/k Área da secção transversal 1/k 2 correntes 1/k Daí a densidade de corrente – k !Problemas de eletromigração (p/ Al: limitar em 1mA/ m 2 ). Abertura de janelas de contato: Se a área 1/k 2 - resistências k 2 correntes 1/k Daí a queda de tensão nos contatos vai ser escalado por k, oposto das tensões de polarização!!. Deve-se então definir algumas regras para o escalamento. Linhas: resistência escala com k; capacitância com 1/k = RC = cte. RC fica mais significativo comparado ao tempo de atraso de porta! Solução: escalar espessura da linha com fator menor. Análise similar com a resistência de S/D pela redução de x J

20 Três eras: i) tensão constante (70-90), ii) junções abruptas (90-00) e iii) strained Si engineering (00-...) Reduz e confiabilidade

21 I on vs. x J para I off fixo (Era junção abrupta) X J menor resulta S menor, permite V T menor, aumenta I on

22 W, L1/k tox1/k NANA kkkk 2 /k V, Vt1/k1 Quantida de Escalonamen to campo constante 1 < k< k Escalonamen to tensão constante 1 < k< k Escalonamento tensão quase- constante 1 < k< k Escalonamento generalizado 1 < k< k Algumas previsões são feitas a partir destas regras: - Limite tecnologia MOS (??) L min de 0.04 m (40 nm) Densidade de empacotamento – 10 8 cm 2. Tempo de chaveamento – 10 ps. Freqüência de clock para redes digitais – 3 GHz. Dados já demonstrados (segundo o livro):

23 Transistor pMOS L = 6 nm (IBM) Ano Nó tecnológico Printed Gate Physical Gate ITRS2001 – dimensões em nm

24 Considerações para o limite de escalamento: Limite para reduzir V DD : –manter sinal maior que o ruído. –imprecisão no valor de V T, e valor fixo de S, impede reduzir V T. – V DD > 0,5V –velocidade de chaveamento e capacidade de corrente em output impõe V DD maior, o que limita o L min por BV. Limites de aquecimento ou dissipação de potência: –refrigeração por ar forçado: 20 a 40 W/cm 2 –refrigeração por líquido pode aumentar o valor em uma ordem. – limita o número de transistores por área –potência dinâmica = fCV 2 limitar a freqüência se T aumenta.

25 6.8 – Efeito das resistências série de fonte e dreno. O canal do transistor está em série com duas resistências parasitarias, fonte e dreno. R1 – resistência do contato metal e a região n + ; R2 – resistência da região difundida n + e LDD (se houver); R3 – resistência de espalhamento (região n + /camada de inversão). Novas tecnologias: d J e A C R Não é mais desprezível.

26 Séria limitação: R SD R SD /R ch era menor que 20%, agora tende a 1 ! Ganho pelo strain tende a saturar para L<100nm (nMOS) e L<50nm (pMOS) devido à R SD. Prioridade: reduzir R SD ; não adianta melhorar a chave MOS (CNT ?) % I D improvement com uso de uniaxial strained Si

27 6.8 – Resistência série Efeito de R na corrente de dreno (fig 6.30): V DS = V DS -2.R.I DS ~ supondo V DS << V GS - V T ~ Caso de junções profundas, óxidos não finos e abertura de contatos grandes reduzem o efeito e obtém-se R, (Cox.R.W) ~ nulo. Caso contrário, R torna-se importante e deve ser considerado. Tem o mesmo efeito sobre I DS que a redução da mobilidade efetiva.

28 6.8 – Resistência série A característica da curva I DS x V GS é a mesma apresentada para a redução da mobilidade efetiva (cap.4) Se assumir os dois efeitos, deve-se substituir, por eff na expressão anterior de I DS. Para manter as resistências de fonte e dreno baixa, elas são cobertas com Ti, Co ou Ni e reagidos termicamente com Si. Salicide (sefl-aligned silicide). Reduz R por 5 a 10. Difícil distinguir os dois efeitos! Se (V GS -V T ) e R (V GS -V T ) << 1:

29 6.9 – Efeito devido a óxido fino e alta dopagem. Para manter a integridade eletrostática dos dispositivos, diminuindo L e W, deve-se diminuir também a espessura de óxido e aumentar a dopagem. Efeitos mais importantes devido à tendência de escalamento: 1) Diminuição da capacitância de óxido efetiva devido à espessura da camada de inversão e de acumulação e a depleção da porta de poli- silício); 2) Aumento da tensão de limiar devido aos efeitos mecânico-quânticos (QM); 3) Tunelamento através de óxido finos.

30 6.9 – Óxido fino e alta dopagem Aumento da espessura efetiva do óxido de porta: A camada de inversão ou acumulação não pode ser mais considerada infinitamente fina (cap. 4 – aproximação por folhas de carga). Para calcular o formato dessa camada: Poisson e Schrödinger d m distância entre a centróide das cargas na camada de inversão (acumulação) e a superfície; tox é a espessura elétrica do óxido. ^ d m ou (t ox –t ox ) se t ox, pois Q B com de N A. ^

31 6.9 – Óxido fino e alta dopagem Depleção no poli-silício da porta: Dependendo da dopagem do poli-silício pode ocorrer a depleção na porta quando a camada de inversão é formada. A depleção resulta numa diminuição da espessura do óxido, (efeito fisicamente diferente de d m ). Se a porta depletar uma profundidade, d p daí: d p é dependente da polarização!!! Solução: usar metal como material de porta.

32 6.9 – Óxido fino e alta dopagem Aumento da tensão de limiar devido aos efeitos mecânico-quânticos; Outro efeito quântico que também aumenta com o escalamento: Potencial de superfície ( s ) necessário para inversão forte. dependente da dopagem ( ).

33 Tunelamento através do óxido de porta; 6.9 – Óxido fino e alta dopagem Para a tecnologia abaixo de 0.13 m, tox ~ 20 Å. Quando a espessura da barreira do óxido torna-se muito pequena, mais elétrons podem tunelar por ela. Limite para t ox ~ 16 Å. Para resolver: substituir o isolante por um outro com constante dielétrica maior t in ; tunelamento para um mesmo C ox. Intenso tema de pesquisa!!!


Carregar ppt "IE733 – Prof. Jacobus Cap. 6 Efeitos em dispositivos de pequenas dimensões. (parte 2)"

Apresentações semelhantes


Anúncios Google