A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

O Método Monte Carlo na Escolha de Políticas de Manutenção PRO5775 - Análise Econômica de Sistemas de Operações Professor Doutor Israel Brunstein Rodrigo.

Apresentações semelhantes


Apresentação em tema: "O Método Monte Carlo na Escolha de Políticas de Manutenção PRO5775 - Análise Econômica de Sistemas de Operações Professor Doutor Israel Brunstein Rodrigo."— Transcrição da apresentação:

1 O Método Monte Carlo na Escolha de Políticas de Manutenção PRO Análise Econômica de Sistemas de Operações Professor Doutor Israel Brunstein Rodrigo Soares Martão

2 2/16 Sistemas Complexos Problemas de manufatura complexos têm solução analítica formal difícil e muitas vezes até impossível de se obter. Outra opção seria o método de tentativa e erro, podendo até ser conduzido de maneira que permitisse interpolação entre as soluções propostas. Porém o método de tentativa e erro consome tempo e dinheiro e muitas vezes é impraticável. Solução: SIMULAÇÃO

3 3/16 Simulações Simulação é assumir a aparência de, sem a realidade (Webster) Determinar um sistema real (tecnológico, humano, econômico...) e de alguma maneira duplicá-lo, usando papel, caneta, palavras, símbolos, computadores, etc. Problema: Afastamento da realidade para simular um sistema é necessário o conhecimento do comportamento e características das partes ou componentes do sistema para podermos predizer o comportamento dinâmico do sistema todo. Entretanto o conhecimento das partes individualmente não garante o conhecimento do comportamento do sistema como um todo uso de modelos. modelos focam geralmente apenas algumas características ignora as demais (grande maioria).

4 4/16 Tipos de Simulação quanto à quantidade de decisão humana: quanto a chances ou probabilidades: Necessidade de decisões humanas ao longo do processo Problema é totalmente estruturado antes de ser iniciada a simulação Ausência de processos estocásticos (processos heurísticos) Uso de processos estocásticos (probabilidades) Método Monte Carlo

5 5/16 Método Monte Carlo Monte Carlo é uma técnica de se gerar dados para simulações através da criação de uma correlação entre números aleatórios e uma função de distribuição acumulada. A partir desta correlação, ao se gerar números aleatórios obtemos uma seqüência de dados futuros (simulados). Pode ser utilizado na obtenção de padrões como números de faltas num determinado dia, números de defeitos num dado lote, número de horas entre falhas, e assim por diante. MODELO Nos. ALEATÓRIOS / DIST. ACUMULADA GERAÇÃO DE Nos. ALEATÓRIOS DADOS SIMULADOS SISTEMA

6 6/16 Porque Distribuição Acumulada e Números Aleatórios? Vamos supor o uso de números aleatórios de 0 à 1 e que as variáveis de interesse possam assumir seis valores (2,3,4,5,6 e 7). Poderíamos representar de duas maneiras: 30% O uso de distribuições acumuladas e números aleatórios faz com que cada um dos dados de interesse apareça com a mesma freqüência relativa esperada, porém numa ordem aleatória.

7 7/16 Utilizando o Método Monte Carlo O uso de médias e distribuições matemáticas é adequado (com cuidado) quando se possuem apenas as médias ou os dados históricos disponíveis não são confiáveis. Com o uso de tabelas e gráficos não é obrigatório escolher uma distribuição matemática como Poisson, normal, binomial, etc. Se não há razão para supor mudança no processo atual, então a distribuição pode ser construída explicitamente sobre a experiência passada. A distribuição ou histograma de dados empíricos pode ser usado como distribuição de freqüência acumulada para ser usada contra os números aleatórios. Para cada simulação, com seu modelo associado, um número correspondente à medida da efetividade deve ser computado, de maneira a permitir comparação entre as soluções.

8 8/16 Utilizando o Método Monte Carlo Passos: 1)Escolha uma medida de efetividade. 2)Decida quais variáveis influem nessa medida. 3)Determine uma distribuição apropriada para representar tais variáveis. 4)Escolha as soluções potenciais para o problema. 5)Gere o conjunto de números aleatórios. 6)Obtenha os dados de interesse a partir da correlação com os números aleatórios. 7)Insira os dados de interesse no modelo de medida da efetividade e compute. 8)A partir dos resultados em 7 escolha a melhor solução. 9)Faça constatações de confiabilidade a respeito da escolha feita em 8.

9 9/16 Exemplo: Padrão de Vendas O sistema de controle de inventário de uma firma está sendo testado e precisamos de um padrão de vendas de 12 dias para tal. HIPÓTESES: a distribuição de vendas é aleatória (ou não se tem histórico confiável); número médio diário de vendas é 5 vendas por dia. SOLUÇÃO: A distribuição de probabilidade acumulada será determinada através de uma distribuição de Poisson, onde {P(v|m)= probabilidade de 5 ou menos vendas sendo 5 a média}

10 10/16 TABELA DO PADRÃO DE VENDAS Exemplo: Padrão de Vendas TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA ACUMULADA Um conjunto de números aleatórios foi usado para gerar seqüências de números que possuem a mesma característica da situação atual que se deseja simular. Enquanto o modelo estatístico empregado continue a representar o sistema real, os padrões simulados serão seguramente confiáveis para uma grande variedade de propósitos.

11 11/16 Estudo de Caso: Política de Manutenção Uma companhia química possui uma série de bombas de injeção de alta pressão operando sobre condições similares. Esta companhia deseja estabelecer a política de manutenção mais adequada. Dados: Cada bomba possui 3 válvulas de entrada e 3 de saída. Estas válvulas são sujeitas a falha e o custo de sua rotina de manutenção é da ordem de horas-homem/ano. Quando uma válvula falha a bomba deve ser desligada e preparada para conserto: é retirado uma proteção para expor o jogo de válvulas de entrada ou a proteção do jogo de válvulas de saída. Não há custos de parada das bombas uma vez que possuem outras bombas stand-by para serem usadas durante a manutenção das válvulas.

12 12/16 Estudo de Caso: Política de Manutenção Custos de manutenção expressos em tempo Distribuição da probabilidade de falha acumulada de um válvula qualquer

13 13/16 Estudo de Caso: Política de Manutenção Observação: a companhia fez um teste qui-quadrado para checar a hipótese zero de que a idade da válvula em que ocorre a falha segue uma distribuição normal. A probabilidade encontrada foi de 24% ou menos. Embora não seja uma probabilidade baixa o suficiente para descartarmos a hipótese zero, utilizaremos a distribuição empírica obtida dos históricos de manutenção. Soluções propostas: I.Reparar uma válvula apenas quando ela falhar. II.Reparar as 3 válvulas de entrada se uma válvula de entrada falhar, ou as 3 válvulas de saída se uma válvula de saída falhar. III.Reparar todas as 6 válvulas toda a vez que for preciso desligar uma bomba para reparar uma válvula. IV.Reparar toda válvula que falhar e mais toda que exceder uma vida média estimada (560 horas)

14 14/16 Estudo de Caso: Política de Manutenção Tabela para geração dos números aleatórios e dos 10 primeiros ciclos de vida das válvulas (a partir da distribuição da probabilidade de falha acumulada de uma válvula qualquer)

15 15/16 Estudo de Caso: Política de Manutenção Experiência simulada de falha nas válvulas

16 16/16 Estudo de Caso: Política de Manutenção Análise das alternativas de políticas de manutenção MELHOR ALTENATIVA


Carregar ppt "O Método Monte Carlo na Escolha de Políticas de Manutenção PRO5775 - Análise Econômica de Sistemas de Operações Professor Doutor Israel Brunstein Rodrigo."

Apresentações semelhantes


Anúncios Google