A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

PROCESSOS DE SEPARAÇÃO POR MEMBRANAS

Apresentações semelhantes


Apresentação em tema: "PROCESSOS DE SEPARAÇÃO POR MEMBRANAS"— Transcrição da apresentação:

1 PROCESSOS DE SEPARAÇÃO POR MEMBRANAS
• Servem como meio de separação e de concentração • Se aplicam a moléculas e a partículas finas Os seguintes processos, operados por pressão, podem ser empregados para separar componentes de meios de fermentação: - Osmose inversa - Ultrafiltração - Filtração tangencial - Diálise

2 Algumas vantagens destes processos são:
Emprego de moderadas ou mesmo baixas temperaturas Baixo efeito químico e mecânico prejudiciais Não envolve mudança de fase Boa seletividade, em muitos casos Concentração e purificação pode ser alcançada em uma etapa Fácil ampliação de escala e flexibilidade

3 1. Osmose inversa (OI) Usa membranas permeáveis à água mas não aos sais e outras moléculas Alta pressão faz a água atravessar a membrana no sentido da solução mais concentrada para a menos concentrada Outros solventes podem atravessar a membrana semipermeável (ex. álcool)

4 Osmose

5 2. Ultrafiltração (UF) Membranas apresentam microporos
A água atravessa a membrana a custa de uma pressão moderada Pequenos solutos podem passar pela membrana, mas macrossolutos e colóides são retidos

6 3. Filtração tangencial (FT)
Constitui uma extensão da ultrafiltração As membranas possuem poros maiores que UF Macrossolutos passam pela membrana Solvente e soluto(s) passam pela membrana por convecção através dos poros Processo também emprega pressão

7 4. Diálise (DI) Membranas possuem poros menores que UF (possuem características de OI e de UF) Processo separa mistura de solutos com base, sobretudo, no tamanho molecular (também por forma e carga líquida da molécula) Separação se dá por diferença de concentração Para solutos iônicos, usa-se a eletrodiálise

8 Características de algumas membranas de acordo com o processo de filtração
Porosidade (%) Tamanho do poro Pressão (kPa) Vazão (L/m2.h) OI - 700 a 20000 1-20 UF 1-10 0,1-20 nm 100 a 500 10-200 FT 30-70 0,1-1,0 m DI 10-20 0,3-3,0 nm

9 Tipos de membranas

10

11

12 Filtração tangencial

13 Tipos de sistemas de filtração tangencial

14 Filtro tipo cartucho espiral. Macrossolutos retidos
Membrana Macrossolutos retidos Separador de membrana Solventes e Microssolutos Retido Alimentação Permeado

15

16 Equacionamento para FT
Microfiltração na qual o meio escoa tangencialmente à superfície do material filtrante Seu desempenho é caracterizado por duas variáveis: fluxo de filtrado e coeficiente de retenção de sólidos em suspensão ou solutos. O fluxo de filtrado (J) varia de 50 a 100 L/h.m2 e é definido por: J = Qf / A onde: Qf é a vazão de filtrado (L/h) A é a área da membrana (m2) O coeficiente de retenção (R) é definido pela equação: R = 1 – (Cf / Cr) onde: Cf é a conc. de solutos ou sólidos no filtrado Cr é a conc. de sólidos ou soluto no retido

17 Tais parâmetros são influenciados por:
Concentração de polarização, que é um gradiente de concentração próximo à membrana Solução: alteração da velocidade tangencial, da pressão ou do pH. “Fouling”, que é o bloqueio ou estreitamento dos poros pelos solutos ou sólidos (“sujamento”) Para minimizar estes efeitos: usar velocidade de escoamento entre 0,2 e 0,5 m/s (filtro placa) ou 2 e 5 m/s (filtro tubular) e pressão transmembrana (PTM) entre 100 e 500 kPa.

18 A velocidade de escoamento (ve) é dada por:
ve = a / At onde: a é a vazão de alimentação de meio (m3/h) At é a área da seção transversal do canal de escoamento (m2) A pressão transmembrana (PTM) é dada por: PTM = (Pa + Pr) - Pf 2 onde: Pa é a pressão de alimentação (N/m2) Pr é a pressão do retido (N/m2) Pf é a pressão do filtrado (N/m2)

19 Os dois fenômenos citados mais a resistência da própria membrana de filtração aumentam a resistência à passagem do fluxo de filtrado, sendo este, portanto, representado por: J = PTM µ (Rm + Rcp + Rf) Onde  é a viscosidade do fluido de alimentação Rm é a resistência da membrana Rcp é a resistência devido à conc. de polarização Rf é a resistência devido ao “fouling”

20 A variáveis do processo são as mesmas em qualquer escala.
Após a definição da PTM, da velocidade de escoamento e da capacidade de filtração (J), a ampliação de escala é feita em função do volume a ser processado. Considerações finais As variáveis de um processo de filtração são as mesmas em qualquer escala. Definindo-se em laboratório a velocidade tangencial de alimentação, a pressão de transmembrana e a capacidade de filtração (J), faz-se a ampliação de escala em função do volume a ser processado.

21 Sistemas de Osmose Reversa Dulcosmose®
Este processo é usado para dessalinizar soluções aquosas. Usando membranas de alta performance, é possível hoje remover mais de 99% de todos os sais de uma solução aquosa.


Carregar ppt "PROCESSOS DE SEPARAÇÃO POR MEMBRANAS"

Apresentações semelhantes


Anúncios Google