Presentations are at http://www.weizmann.ac.il/AERI/presentations.html Weizmann Institute’s Alternative Sustainable Energy Research Initiative http://www.weizmann.ac.il/AERI/

Slides:



Advertisements
Apresentações semelhantes
A ENERGIA.
Advertisements

Novos Instrumentos de Planejamento Energético Regional visando o Desenvolvimento Sustentável FAPESP _ 03/ ª CONFERÊNCIA SOBRE PLANEJAMENTO INTEGRADO.
Curso sobre concorrência em transmissão, 10/2007
Energia Nuclear Usinas Nucleares.
FONTES DE ENERGIA NO BRASIL
O que é energia elétrica? Onde a utilizamos? Como ela é produzida?
AQUECEDORES DE ÁGUA POR ENERGIA SOLAR
Energia Educação Tecnológica Prof.-Fernando Rui Campos.
(Perigo ambiental do planeta, principalmente 3o.Md)
Início.
Fontes e formas de energia
E.E profª. Nair Palácio de Souza
Energia Limpa O que é?.
Fontes de energia Natureza e Sociedade.
EFICIÊNCIA ENERGÉTICA I
ENERGIAS ALTERNATIVAS
A QUESTÃO DO PETRÓLEO NO BRASIL.
FONTES DE ENERGIA.
Prof. Gilberto De Martino Jannuzzi
Energia e Mudança do Clima
Pegada Ecolígica Priscila Dias Pereira.
RECURSOS NATURAIS Homem usa 20% a mais do que a Terra pode repôr
ENERGIA & SUSTENTABILIDADE.
Desenvolvimento sustentável
Agenda Elétrica Sustentável 2020
DESENVOLVIMENTO SUSTENTÁVEL Lembrando a todos,
ENERGIA E MEIO AMBIENTE
A auto-suficiência de petróleo pode transformar o Brasil em uma potência mundial? Quais as relações entre o óleo e as Guerras do Oriente Médio?
Energias renováveis.
Hoje Relatório para 16 de março Comentários no blog: sexta-feira
Estágio Supervisionado X
Energia Renovável e Não Renovável
Energia limpa.
6ª aula CURSO DE ESPECIALIZAÇÃO EM EFICIÊNCIA ENERGÉTICA
6ª aula CURSO DE ESPECIALIZAÇÃO EM EFICIÊNCIA ENERGÉTICA
CURSO ESPECIALIZAÇÃO EM EFICIÊNCIA ENERGÉTICA
Comparação entre as as fontes energéticas Professora: Ana Paula Diniz
Profª Janete Feijó, MSc. Coord. Curso de Engenharia Ambiental - CTTMar
Objeto do conhecimento: Conceitos básicos
Menu D.2 D.3 D.4 D.5 D.6 D.7 D.8 D.9 D.10 D.11 D.12 D.13 D.14 D.15 D.16 D.17 D.18 D.19 D.20 D.21 D.22.
Maria Carla Belchior Rodolfo Vescovi
Energia Solar Bianca e Laura 2M2.
Fontes de Energia e Impacto Ambiental
Energia Eólica Princípios.
Transferência de Energia - exercícios
O ambiente é de todos – vamos usar bem a energia
I Conferência sobre Planejamento Integrado de Recursos Energéticos – Região Oeste Paulista Novos Instrumentos de Planejamento Energético Regional visando.
Economia e Competitividade da Energia Nuclear Prof. Amaro Pereira.
Recursos Naturais Mónica Costa Nº5621 9ºD.
Fontes e formas de energia
Perspectivas da Matriz Elétrica Brasileira
VII Conferência Anual da RELOP
Recursos Energéticos Renováveis
ARQUITETURA E CONSTRUÇÃO SUSTENTÁVEL
A ENERGIA NUCLEAR É NECESSÁRIA PARA O DESENVOLVIMENTO DO PAÍS ? J.Delgado Domingos Prof.Cat.(jubilado) do IST Instituto Superior Técnico IN+ 22 Fevereiro.
Leonam dos Santos Guimarães
Energia Solar.
Petróleo e Gas Natural.
O ambiente é de todos – vamos usar bem a energia
CAPACIDADE DE REALIZAR TRABALHO
Ambiente & Energia Estatísticas Energéticas Valentim M B Nunes Unidade Departamental de Engenharias Instituto Politécnico de Tomar, Setembro, 2014.
TIPOS E FONTES ALTERNATIVAS
As Fontes de Energia Olá! Eu sou o Éolo e vou estar aqui contigo para te falar sobre as diferentes fontes de energia que existem no nosso planeta.
Fontes de Energia ALUNAS: Alice Jaciele n° 01 Bianca Letícia nº 04 Série: 8ªA.
Geração de Energia Elétrica - Hidrelétricas
3ª CONFERÊNCIA - EGA FONTES DE ENERGIA
Matéria e energia Ciências – 5º ano.
A FÍSICA E O NOVO ENEM Prof. Cleriston da Paz. O Novo ENEM e a Física 2.
Ciências – 5º ano  Todas as substâncias, sólidas, líquidas ou gasosas: -São constituídas de matéria -Têm massa -Têm volume -Ocupam lugar no espaço -Têm.
Universidade Federal de Pernambuco Centro Acadêmico de Vitória Programa de Pós Graduação em Saúde Humana e Meio Ambiente Maria Luiza Marinho Julyanne Goes.
Transcrição da apresentação:

Presentations are at http://www.weizmann.ac.il/AERI/presentations.html Weizmann Institute’s Alternative Sustainable Energy Research Initiative http://www.weizmann.ac.il/AERI/ Presentations are at http://www.weizmann.ac.il/AERI/presentations.html ENERGIA O Desafio Global David Cahen 05/2010

Presentations are at http://www.weizmann.ac.il/AERI/presentations.html Weizmann Institute’s Alternative Sustainable Energy Research Initiative http://www.weizmann.ac.il/AERI/ Presentations are at http://www.weizmann.ac.il/AERI/presentations.html ENERGIA O Desafio Global Viver a vida a que aspiramos, de forma sustentável, é um desafio sem predecentes Por quê? Três Razões: David Cahen 05/2010

Os maiores desafios da humanidade* -a- A Energia define o accesso à maioria dos outros recursos Os maiores desafios da humanidade* E N E R G IA  sustentabilidade de recursos ÁGUA  ( energia) MEIO-AMBIENTE ( energia) COMIDA ( energia) SAÚDE/DOENÇAS (  energia) POBREZA (~ energia) EDUCAÇÃO, SEGURANÇA P O P U L A Ç Ã O  ( ~ energia barata) Credits/sources: many slides or parts of them came from (websites of): IEA, USDOE BES, NREL, N. Lewis (Caltech), P. Alivisatos, S. Chu (UCB /LBL), A. Nozik, S. Kurtz, D. Ginley (NREL), J. Karni, I. Lubomirsky, I. Maron, G. Hodes (WIS), A. Zaban (BIU), L. Bronicki (Ormat), Y. Lou (CWRU) , G. Crabtree, * after the late R. Smalley (Rice U) David Cahen 05/2010

-a- A Energia define o accesso à maioria dos outros recursos clima água energia alimento

O que é energia? Energia (Trabalho): kWh Potência kW (sua conta de luz!) (consumo por pessoa) kW/person ~ 0.7 India (2008 data) ~ 1.8 Brasil ~ 2.1 China ~ 2.4 média mundial* ~ 4.7 Europa Ocid. ~10 EUA * para prod.de alimentos: 0.14 é a média mundial Ela está acabando? (Energia se conserva, E=mc2; --> energia nuclear!) Não exatamente…. A questão é mais: de QUAIS tipos de energia nós precisamos, QUANDO e ONDE? (É necessária energia para transformar energia “tipo A” em energia “tipo B”) There are many different forms of energy: radiation, electricity, chemical energy, mechanical energy, and heat. Each form of energy can be transformed into other energy forms. From mechanical energy to electrical by running a generator or dynamo and thereby generating electricity. Or to change electricity into mechanical energy, electrical engine which drives an elevator.   There is also a potential energy which can be released, for example, a toy with a spring can stand without releasing the spring for years and once you release it, it starts to jump – the energy in the spring was a potential energy. Another example: At a hydro electrical power plant the water is at a certain height and if we release it the water runs downhill and turns turbines and generates electricity. The water at certain altitudes has potential energy, which is transformed by turbogenerators into electricity. Chemical energy is transformed in batteries into electrical energy. Sun radiation energy is converted into heat at solar heaters. The law of energy conservation states that the energy doesn’t get lost, the energy can be transformed but its amount is conserved. The law was introduced by a scientist named Joule, based on a simple experiment. Due to this, the energy unit is called after him i.e., J (Joule). There are different energy units, but all have equivalent factors (such as kilometer to mile). For example: Joule, calorie, BTU etc. There is a very common unit of energy – kilowatt-hour (kWh) that we are going to talk about. There are also somewhat strange terms of energy, like TOE (tons of oil equivalent), which is capacity. Capacity is the amount of energy generated or used in a certain amount of time. To carry a 100 kg cargo to a height of 60 m by a lift requires 50,000 Joules. Period of time is not important. If we want to do it in one minute, we need a capacity of 60,000 divided by 60 seconds or 1 kJ/sec of energy. David Cahen 05/2010

Demanda de Energia Mundial Total em 2010: ~14.5 TW; em 2050: ~28 – 40 ?? TW 1 TW = 1000 GW 1 GW = 1000 MW 1 MW = 1000 kW Usina de Itaipu, Capacidade de prod.12.5 GWe Estimativas de 2009 (%) ---------------- E.U.A ~ 19 U.E ~ 14 FSU ~ 10 Brasil ~ 2.2 Sudeste Asia ~ 25 China ~ 16 Japão ~ 5 India ~ 5 Israel ~ 0.2 David Cahen 05/2010

Demanda de Energia Mundial Total em 2010: ~14.5 TW; em 2050: ~28 – 40 ?? TW 1 TW = 1,000,000,000,000 W (Brasil ~ 0.35 TW) 1 GW = 1,000,000,000 W (Itaipu ~ 12.5 GWe) 1 MW = 1,000,000 W (potência para 1000 EUA residências) 1 kW = 1,000 W (1 aparelho de ar condicionado) Recarregador de celular ~ 5 We TV ou Laptop, PC ~ 20We Geladeira + freezer ~ 40We Lavadoura de roupas ~ 500We David Cahen 05/2010

Fontes de energia mundiais por Tipo -b- Será que podemos depender tanto dos combustíveis fósseis? 5 for 2010 > 80% da energia mundial vem de combustíveis fósseis 4 3 TW 2 Petróleo gás carvão Hidro Outro Bio-massa Renováveis Nuclear 1 1 TW = 1000 GW 1 GW = 1000 MW 1 MW = 1000 kW Fontes de energia mundiais por Tipo ENERGIA: J, Wsec; BTU POTÊNCIA : W = J/sec David Cahen 05/2010

Claro, em algum ponto ele vai acabar, e, sim, -b- Será que podemos depender tanto dos combustíveis fósseis? Mas.. O petróleo vai acabar…. Claro, em algum ponto ele vai acabar, e, sim, O petróleo limpo e barato está acabando mas… There are many different forms of energy: radiation, electricity, chemical energy, mechanical energy, and heat. Each form of energy can be transformed into other energy forms. From mechanical energy to electrical by running a generator or dynamo and thereby generating electricity. Or to change electricity into mechanical energy, electrical engine which drives an elevator.   There is also a potential energy which can be released, for example, a toy with a spring can stand without releasing the spring for years and once you release it, it starts to jump – the energy in the spring was a potential energy. Another example: At a hydro electrical power plant the water is at a certain height and if we release it the water runs downhill and turns turbines and generates electricity. The water at certain altitudes has potential energy, which is transformed by turbogenerators into electricity. Chemical energy is transformed in batteries into electrical energy. Sun radiation energy is converted into heat at solar heaters. The law of energy conservation states that the energy doesn’t get lost, the energy can be transformed but its amount is conserved. The law was introduced by a scientist named Joule, based on a simple experiment. Due to this, the energy unit is called after him i.e., J (Joule). There are different energy units, but all have equivalent factors (such as kilometer to mile). For example: Joule, calorie, BTU etc. There is a very common unit of energy – kilowatt-hour (kWh) that we are going to talk about. There are also somewhat strange terms of energy, like TOE (tons of oil equivalent), which is capacity. Capacity is the amount of energy generated or used in a certain amount of time. To carry a 100 kg cargo to a height of 60 m by a lift requires 50,000 Joules. Period of time is not important. If we want to do it in one minute, we need a capacity of 60,000 divided by 60 seconds or 1 kJ/sec of energy. Será que a gente realmente sabe? David Cahen 05/2010

Reservas de Petróleo de acordo com vários países E confiar nas companias petrolíferas não é lá muito melhor… From S. Kurtz, NREL; Source: EIA (Energy Information Administration)

Reservas de Energia e Recursos -b- Será que podemos depender tanto dos combustíveis fósseis? Reservas de Energia e Recursos Ultimate Recursos Reservas (em número de anos de consumo anual igual a 2000 Petróleo ≥ 40 ≥ 50 Gás ≥ 70 ≥ 200 constante independente de tempo: ~30-50 anos de petróleo Mas lembre-se: “a Idade da Pedra não acabou por falta de pedras” Sheik Ahmed Zaki Yamani, Ministro do Petróleo Saudita, 1962-1986 David Cahen 05/2010

“Reservas” de Energia e Recursos -b- Será que podemos depender tanto dos combustíveis fósseis? “Reservas” de Energia e Recursos Possíveis Recursos Reservas (em número de anos de consumo anual igual ao de 2000) Petróleo ≥ 40 ≥ 50 Gás ≥ 70 ≥ 200 Carvão ~ 100 ~ 400 Então… o carvão resolve os problemas…. e … David Cahen 05/2010

carvão  aquecimento global -b- Será que podemos depender tanto dos combustíveis fósseis? carvão  aquecimento global There are many different forms of energy: radiation, electricity, chemical energy, mechanical energy, and heat. Each form of energy can be transformed into other energy forms. From mechanical energy to electrical by running a generator or dynamo and thereby generating electricity. Or to change electricity into mechanical energy, electrical engine which drives an elevator.   There is also a potential energy which can be released, for example, a toy with a spring can stand without releasing the spring for years and once you release it, it starts to jump – the energy in the spring was a potential energy. Another example: At a hydro electrical power plant the water is at a certain height and if we release it the water runs downhill and turns turbines and generates electricity. The water at certain altitudes has potential energy, which is transformed by turbogenerators into electricity. Chemical energy is transformed in batteries into electrical energy. Sun radiation energy is converted into heat at solar heaters. The law of energy conservation states that the energy doesn’t get lost, the energy can be transformed but its amount is conserved. The law was introduced by a scientist named Joule, based on a simple experiment. Due to this, the energy unit is called after him i.e., J (Joule). There are different energy units, but all have equivalent factors (such as kilometer to mile). For example: Joule, calorie, BTU etc. There is a very common unit of energy – kilowatt-hour (kWh) that we are going to talk about. There are also somewhat strange terms of energy, like TOE (tons of oil equivalent), which is capacity. Capacity is the amount of energy generated or used in a certain amount of time. To carry a 100 kg cargo to a height of 60 m by a lift requires 50,000 Joules. Period of time is not important. If we want to do it in one minute, we need a capacity of 60,000 divided by 60 seconds or 1 kJ/sec of energy. David Cahen 05/2010

Se por um lado nem todo mundo concorda que carvão aquecimento global -b- Será que podemos depender tanto dos combustíveis fósseis? Se por um lado nem todo mundo concorda que carvão aquecimento global Poucos contestam o fato de que NÓS poluímos nossa ÁGUA, nosso AR e o Planeta. There are many different forms of energy: radiation, electricity, chemical energy, mechanical energy, and heat. Each form of energy can be transformed into other energy forms. From mechanical energy to electrical by running a generator or dynamo and thereby generating electricity. Or to change electricity into mechanical energy, electrical engine which drives an elevator.   There is also a potential energy which can be released, for example, a toy with a spring can stand without releasing the spring for years and once you release it, it starts to jump – the energy in the spring was a potential energy. Another example: At a hydro electrical power plant the water is at a certain height and if we release it the water runs downhill and turns turbines and generates electricity. The water at certain altitudes has potential energy, which is transformed by turbogenerators into electricity. Chemical energy is transformed in batteries into electrical energy. Sun radiation energy is converted into heat at solar heaters. The law of energy conservation states that the energy doesn’t get lost, the energy can be transformed but its amount is conserved. The law was introduced by a scientist named Joule, based on a simple experiment. Due to this, the energy unit is called after him i.e., J (Joule). There are different energy units, but all have equivalent factors (such as kilometer to mile). For example: Joule, calorie, BTU etc. There is a very common unit of energy – kilowatt-hour (kWh) that we are going to talk about. There are also somewhat strange terms of energy, like TOE (tons of oil equivalent), which is capacity. Capacity is the amount of energy generated or used in a certain amount of time. To carry a 100 kg cargo to a height of 60 m by a lift requires 50,000 Joules. Period of time is not important. If we want to do it in one minute, we need a capacity of 60,000 divided by 60 seconds or 1 kJ/sec of energy. David Cahen 05/2010

Então..…existem outras alternativas? A opção “lógica”: Energia Nuclear Por quê? David Cahen 05/2010

Fontes de energia através dos tempos* -c- Até hoje, novas fontes de energia sempre forneceram mais energia no mesmo peso e volume que as anteriores Pré-domesticação animal Fontes de energia através dos tempos* * “Mundo ocidental” David Cahen 05/2010

E existem outras alternativas? Nuclear “Lunar” (gravitacional) David Cahen 05/2010

Existem outras alternativas? Nuclear: aqui e longe (incl. geotérmica, solar)  Fontes de energia renováveis * SOLAR (incl. éolica, hidrelétrica, biocombustível) * Geotérmica; marés*, correntes oceânicas/ ondas* * “Lunar” David Cahen 05/2010

Energia Renovável no Planeta vermelho: existe e sabemos como obter roxo: usada atualmente Biomassa Incl. toda a terra ainda não cultivada→ ~5 TW (H2O?) 1.9 TW (0.2 TW sustentável) Eólica ~3-8 TW 0.24 TWp Hidrelétrica 1.5 TW 0. 8 TW Mas.… armazenamento Geotérmica ~1 TW ~ 0.03 TW 1.2x105 TW ~ 100s TW (x 0.110s TW) 0.22 TWp (outra) solar

USINAS SOLARES HOJE Maior usina células solares do mundo(2009) 0.2 GWp ( ~40 MWc) usina em Golmud, PRChina 03/’12 Potência fotovoltaica global instalada~0.07 TWp Meta da China>2012 ≥ 0.002 TWp/ano Nellis AFB (S. Nevada) 30 TWp (~ 6 TWC) exigirão 1 usina como essa, Por HORA, pelos próximos ~ 20 anos David Cahen 05/2010

~ 0.24 TWp ~ 0.08 TWc EÓLICA ACUMULADA 10/11 Energia Eólica Parque eólico Offshore David Cahen 05/2010 21

~ 0.24 TWp ~ 0.08 TWc EÓLICA ACUMULADA 10/11 Energia Eólica BIOCOMBUSTÍVEL: produção 2010 ~ 0.1 TW with 50 x  5 TW Maior parque eólico do mundo: Roscoe Wind Texas, 0.78 GWp Para se conseguir 10 TWc 5 / por dia por 22 anos Meta da China:~0.05 TWcem10 anos EÓLICA ACUMULADA 10/11 ~ 0.24 TWp ~ 0.08 TWc Parque eólico Offshore David Cahen 05/2010 22

Plano de crescimento elétrico da China: 0.1 TW/ano …… 10 TW eletricidade a partir de CARVÃO ? Capacidade de geração de eletricidade do Brasil: ~ 0.1 TW (0.5 kW/capita) Capacidade de geração de eletricidade de Israel: ~ 0.012 TW (1.6 kW/capita) Plano de crescimento elétrico da China: 0.1 TW/ano …… Por isso, “se você quiser, não será um sonho” Uma usina como essa, todos os dias, pelos próximos… 11 anos David Cahen 05/2010

Então, o que devemos / podemos fazer no: Curto prazo (< 2020) Evoluções em tecnologia e engenharia: e reciclar, reutilizar, reduzir, ou seja, conservar !! Médio prazo (até 2030-2050): desenvolvimento da ciência aplicada e engenharia + Evoluções na ciência básica A longo prazo(> 2040): estimular REVOLUÇÕES na ciência….

“Se VOCÊ quiser, não será um sonho” Para fornecer a Energia Alternativa necessária nós (cientistas) precisamos fazer Pesquisa Fundamental para realizar aquilo que hoje são sonhos, como por exemplo: Fotossíntese Artificial Eficiente, Viável Economicamente Células Solares Baratas e Eficientes: tinta solar ; ótica inteligente? Fotossíntese Natural Inteligente: engenharia genética biologia sintética…… ? Vídeo conferências em 3-D (Holographic) Hélice de turbina eólica “Memory-shape” Energia Nuclear (Mais) Segura e (Mais) Limpa! e….. Onde quer que a curiosidade e a criatividade nos levarem!!! “Se VOCÊ quiser, não será um sonho” David Cahen 05/2010

Presentes de Deus para a humanidade

Presentes de Deus para a humanidade

Presentes de Deus para a humanidade Silicone (oxide)

Energia: esse é O Desafio Global Weizmann Institute’s Alternative, Sustainable Energy Research Initiative Energia: esse é O Desafio Global Vencê-lo requer que todos nós trabalhemos juntos! Vencer o DESAFIO (TW) DA ENERGIA poderá ser o avanço mais importante da humanindade mas…. These four spots light define the Hawaiian Islands; Nigeria produces little light though its population is almost half that of the united states Ribbon of the light corresponds to the Nile river in Egypt Reunion and Mauritious are small but prosperous while Madagasgar has 18 million is almost dark South Korea is prosperously bright while North Korea only has its capital Pyongyang lit up; Trans-Siberian railroad is a thin stretching form Moscow through the center of Asia to Vladivostok Where Does The Energy Go? Introduction Human-made light is visible in this view of the Earth. The brightness of the light graphically illustrates local fossil fuel consumption. Brightness does not necessarily correspond to human population. For example, the Island of Madagasgar holds 18 million people yet it is almost totally dark. Place your mouse on the yellow circles for additional information. earth at night About Earth at Night Hundreds of photographs taken over the course of a year were combined to make this picture. The photographs were made by a satellite on cloudless nights. Much larger and more detailed versions of this picture are available at: http://visibleearth.nasa.gov/cgi-bin/viewrecord?5826 Para isso nós precisamos começar… David Cahen 05/2010

Presentations are at http://www.weizmann.ac.il/AERI/presentations.html Weizmann Institute’s Alternative Sustainable Energy Research Initiative http://www.weizmann.ac.il/AERI/ Presentations are at http://www.weizmann.ac.il/AERI/presentations.html AGORA David Cahen 05/2010

fin

Possibilidades em Engenharia Botânica-Agrícola e ALGAS

ALGAS

Células Solares, como elas funcionam? Luz Absorvida no Semicondutor Corrente Elétrica e e e e e e e e e e e e As células solares são como um “escorregador” de elétrons

ALGAS 35