Parte III: Espectroscopia de Diatômicas

Slides:



Advertisements
Apresentações semelhantes
«Forte do Bom Sucesso (Lisboa) – Lápides 1, 2, 3» «nomes gravados, 21 de Agosto de 2008» «Ultramar.TerraWeb»
Advertisements

IFTO ESTRUTURA DE DADOS AULA 05 Prof. Manoel Campos da Silva Filho
CÁLCULOS EM QUÍMICA Unidade de Massa Atômica Massa Atômica
UNICAMP Universidade Estadual de Campinas Centro Superior de Educação Tecnológica Divisão de Telecomunicações Propagação de Ondas e Antenas Prof.Dr. Leonardo.
A estrutura do átomo Parte 1
Propriedades físicas representativas de
A busca das mulheres para alcançar seu espaço dentro das organizações
Vamos contar D U De 10 até 69 Professor Vaz Nunes 1999 (Ovar-Portugal). Nenhuns direitos reservados, excepto para fins comerciais. Por favor, não coloque.
Exercício do Tangram Tangram é um quebra-cabeças chinês no qual, usando 7 peças deve-se construir formas geométricas.
Pesquisa Bibliográfica Disciplina de Metodologia da Pesquisa Profª Tereza Yoshiko Kakehashi 1.
Nome : Resolve estas operações começando no centro de cada espiral. Nos rectângulos põe o resultado de cada operação. Comprova se no final.
1 INQUÉRITOS PEDAGÓGICOS 2º Semestre 2003/2004 ANÁLISE GERAL DOS RESULTADOS OBTIDOS 1.Nº de RESPOSTAS ao inquérito 2003/2004 = (42,8%) 2.Comparação.
Sumário, aula 9 Elasticidade Elasticidade arco Elasticidade no ponto
Cálculo - Thomas Capítulo 3.
ÁTOMOS: ESTRUTURA ELETRÔNICA.
Curso de ADMINISTRAÇÃO
Análise de regressão linear simples: abordagem matricial
EXPRESSÕES ARITMÉTICAS
FUNÇÃO MODULAR.
Aula 4 Nomes, Vinculações, Tipos e Escopos
Antonio Mário Magalhães
Provas de Concursos Anteriores
TENSÕES E CORRENTES EM CIRCUITOS TRIFÁSICOS BALANCEADOS Sistemas de potência são alimentados por geradores trifásicos. De maneira ideal, os geradores suprem.
ESTATÍSTICA.
Renda até 2 SM.
MECÂNICA - ESTÁTICA Cabos Cap. 7.
Diagnósticos Educativos = Diagnósticos Preenchidos 100% = 1.539
PESQUISA SOBRE PRAZO MÉDIO DA ASSISTÊNCIA NA SAÚDE SUPLEMENTAR
MECÂNICA - DINÂMICA Exercícios Cap. 13, 14 e 17. TC027 - Mecânica Geral III - Dinâmica © 2013 Curotto, C.L. - UFPR 2 Problema
Slides para o 1° ano Cpmg-HCR IDENTIFICANDO O ÁTOMO
Bolha Posição de máx. W2 Ponto de Estagnação
MECÂNICA - ESTÁTICA Vetores Forças Cap. 2.
Conceitos de Astrofísica
Propriedades Atômicas e Tendências Periódicas
CATÁLOGO GÉIA PÁG. 1 GÉIA PÁG. 2 HESTIA PÁG. 3.
PROCESSOS PRINCIPAIS Alunos - Grau de Satisfação 4971 avaliações * Questões que entraram em vigor em 2011 ** N.A. = Não Aplicável Versão: 07/02/2012 INDICADORES.
LINHAS MAIS RECLAMADAS Ranking Negativo para Fiscalização Direcionada Conservação - Frota ANO IV – Nº 06.
LINHAS MAIS RECLAMADAS Ranking Negativo para Fiscalização Direcionada Conservação - Frota ANO IV – Nº 11.
Trabalho sobre Cor Thiago Marques Toledo.
1 Indicadores do Mercado de Meios Eletrônicos de Pagamento Junho de 2006 Indicadores do Mercado de Meios Eletrônicos de Pagamento Junho de 2006.
2 Campo Elétrico Livro texto:
JESUS SE ENCONTRA COM SEUS PRIMEIROS SEGUIDORES
LINHAS MAIS RECLAMADAS Ranking Negativo para Fiscalização Direcionada Conservação - Frota ANO IV – Nº 12.
FISCALIZAÇÃO DIRECIONADA CONDUTA - AUXILIAR ANO III – Nº 05.
FISCALIZAÇÃO DIRECIONADA CONDUTA - AUXILIAR ANO III – Nº 02.
FISCALIZAÇÃO DIRECIONADA NÍVEL DE SERVIÇO ANO I – Nº 4.
Coordenação Geral de Ensino da Faculdade
Os números a seguir, representam as notas de
LIGAÇÕES QUÍMICAS GEOMETRIA MOLECULAR HIBRIDIZAÇÃO
Plataforma Brasil – Submissão de pesquisa
Funcionários - Grau de Satisfação 2096 avaliações
PERFIL DOS BENEFICIÁRIOS E NÃO-BENEFICIÁRIOS DO PROGRAMA BOLSA FAMÍLIA EM TERMOS DE MERCADO DE TRABALHO: CONSIDERAÇÕES METODOLÓGICAS E SUBSTANTIVAS Alessandra.
ESPECTROSCOPIA O universo em cores
Tributação da Exportação nas Empresas optantes pelo Simples Nacional
Estudo dos Gases Prof. Fabio Costa.
1/40 COMANDO DA 11ª REGIÃO MILITAR PALESTRA AOS MILITARES DA RESERVA, REFORMADOS E PENSIONISTAS - Mar 06 -
APOIOS PEDAGÓGICO ACRESCIDO
Projeto Medindo minha escola.
Teoria dos Orbitais Moleculares (TOM)
Cruz Alta Nossa Velha - Nova Parte 51 CRUZ ALTA VISTA DO ESPAÇO – Parte
LINHAS MAIS RECLAMADAS Ranking Negativo para Fiscalização Direcionada Conduta - Auxiliar ANO V – Nº 04.
1 Aplicações do Fecho Regular. 2 A interseção de uma linguagem livre de contexto e uma linguagem regular é uma linguagem livre de contexto livre de contexto.
CONCEITOS FUNDAMENTAIS
Olhe fixamente para a Bruxa Nariguda
Máquina de Turing Universal
3ª PESQUISA DE REMUNERAÇÃO
Equipe Bárbara Régis Lissa Lourenço Lucas Hakim Ricardo Spada Coordenador: Gabriel Pascutti.
Parte III: Espectroscopia
Disciplina : Ciência dos Materiais LOM 3013 – 2015M1
ÁTOMO DE HIDROGÊNIO Tratamento quântico requer a solução da equação de Schrödinger Aplica-se o modelo de partícula quântica sob condições de contorno para.
Transcrição da apresentação:

Parte III: Espectroscopia de Diatômicas Joaquim Delphino Da Motta Neto Departamento de Química, Cx. Postal 19081 Centro Politécnico, Universidade Federal do Paraná (UFPR) Curitiba, PR 81531-990, Brasil

Agora examinaremos aspectos gerais de uma das mais coloridas Na aula anterior vimos diversos aspectos de alguns métodos semi-empíricos e aplicações químicas... Agora examinaremos aspectos gerais de uma das mais coloridas partes da Química. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Resumo Espectro do Sol – Wollaston & Fraunhofer Espectroscopia – Bunsen & Kirchhoff Descoberta de novos elementos Espectro do hidrogênio – Balmer & Rydberg Astrofísica – classificação de galáxias Alguns sistemas estudados: CoN e FeN Conclusão SEMAPAQUI - Curso de Quântica - Parte III

Para vermos as cores, precisamos de luz... Qual é a principal fonte de luz deste planeta? SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III O espectro do Sol Este é um problema bem antigo. O espectro foi primeiramente registrado por Wollaston (1808) e Fraunhofer (1815). As mais de 500 linhas são devidas a transições de elementos diferentes. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III No diagrama abaixo mostramos apenas as linhas mais proeminentes registradas por Fraunhofer. Na época não havia nenhuma explicação para as posições destas linhas... SEMAPAQUI - Curso de Quântica - Parte III

Quem “inventou” a espectroscopia? O problema é que no começo do Século XIX não havia técnicas apropriadas para o estudo dos espectros... Quem “inventou” a espectroscopia? SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Robert W.E. Bunsen (1811-1899) Em 1839 ficou famoso por seus experimentos com os derivados de cacodila. Em 1841 introduziu o eletrodo de carbono na pilha de Bunsen. Em 1845 viajou para a Islândia e visitou o Monte Hekla. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Em meados da década de 50, Bunsen estava muito preocupado com a ilumina- ção de seu laboratório em Heidelberg... A fumaça então gerada também era bastante desagradável. Para resolver o problema, ele bolou uma maneira de controlar a combustão... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Bico de Bunsen (1855) A idéia é muito simples: misturar o ar com o gás antes do ponto projetado de combustão. Peter Desaga (mecânico da Univ. de Heidelberg) construiu o queimador de acordo com as especificações de Bunsen. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A chama resultante não provoca fumaça! Seu brilho pode ser contro- lado facilmente através do aumento ou diminuição do ar na mistura (a válvula na base do queimador). Várias universidades logo encomendaram o aparelho. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A chama limpa e brilhante do bico de Bunsen foi um avanço tecnológico espetacular, que levou diretamente a um avanço ainda mais espetacular... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Gustaf Kirchhoff (1824-1887) Em 1845 propôs as leis que descrevem a corrente e a voltagem em circuitos elétricos. Em 1851, conheceu Bunsen, que arranjou recursos para Kirchhoff passar algum tempo em Heidelberg... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Espectroscópio (1859-1862) Kirchhoff concebeu e montou um conjunto com um prisma, três telescópios velhos e uma fonte de luz (o bico de Bunsen!) O conjunto decompõe a luz nos comprimentos de onda muito mais eficientemente que os filtros de vidro usados até então. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Do ângulo de desvio da luz (medido num vernier e registrado) determina-se o comprimento de onda da raia com grande precisão. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A invenção do espectroscópio constituiu uma ferramenta de análise impressionante: nas décadas seguintes, vários elementos foram descobertos... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Novos Elementos SEMAPAQUI - Curso de Quântica - Parte III

por uma racionalização A principal conseqüência deste “inchaço” da lista de elementos foi a procura dos químicos por uma racionalização da estrutura atômica... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III ... e a invenção da Tabela Periódica por Mendeleev em 1870. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Como vimos anteriormente, neste ponto havia uma curiosidade a respeito da composição do Sol. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Anders J. Ångstrom (1814-1874) Trabalhou com Astronomia e Termoquímica na Univ. Uppsala. Descobriu vários princípios fundamentais da nova ciência da Espectroscopia. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Ångstrom reconheceu que três das sete linhas de Fraunhofer estavam nas posições exatas das linhas do hidrogênio... E viu que não era coincidência. Obs.: a composição do Sol é aproximadamente 73% de hidrogênio, 25% de hélio mais 0,77% de oxigênio, 0,29% de carbono, 0,16% de ferro etc. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Claro que na década de 1880 os cientistas ainda não contavam com recursos mais sofisticados como Mecânica Quântica... Por isso, alguns problemas ainda davam dores de cabeça aos espectroscopistas. SEMAPAQUI - Curso de Quântica - Parte III

Espectro do hidrogênio Em 1884 quatro linhas do espectro eram conhecidas. Muitas medidas da posição destas linhas foram publicadas e estavam disponíveis na literatura... SEMAPAQUI - Curso de Quântica - Parte III

Hidrogênio: espectro de emissão Como Ångstrom havia notado, para todos os elementos o espectro de emissão é igual ao de absorção! SEMAPAQUI - Curso de Quântica - Parte III

Por que as linhas estão exatamente nestas posições? Qual é a conexão dos espectros com a estrutura da matéria? SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Johann J. Balmer (1825-1898) Um obscuro matemático de Basel, fascinado por coisas de numerologia. Apesar de interessado por Geometria, não fez nenhuma contribuição significante para o assunto. Começou a estudar as quatro linhas do espectro do hidrogênio em 1884 por sugestão de um amigo... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Vários pesquisadores estavam estudando o espectro do hidrogênio... Os números mais recentes na época eram os de Ångstrom. Balmer escreveu as quatro linhas conhecidas na forma e notou que eram equivalentes a SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Balmer reconheceu os numeradores como 32, 42, 52, 62 e os denominadores como 32-22, 42-22, 52-22 e 62–22 e assim encontrou a equação empírica onde h = 3646 Å SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Em 1885 Balmer anunciou a famosa fórmula que descreve o espectro de absorção do hidrogênio: onde h = 3646 Å n=5 n=4 n=3 SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Janne R. Rydberg (1854-1919) Tentou racionalizar a perio- dicidade das propriedades dos elementos. Concentrou-se na enorme quantidade então disponível de dados espectroscópicos. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Sabemos que Para diminuir as contas necessárias, Rydberg introduziu o “número de onda” n hoje definido por Esta mudança permitiu que Rydberg reconhecesse padrões até então desconhecidos... A curva do gráfico n vs. número de ordem m dava hipérboles idênticas para diferentes séries e elementos ! SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Em 1888, Rydberg estava examinando a fórmula quando viu a fórmula de Balmer para o hidrogênio, e a reescreveu como Hoje conhecemos esta relação como SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A constante de Rydberg do hidrogênio é RH = 109677,576  0,012 cm-1 Esta fórmula pode ser generalizada para quaisquer elementos do grupo I (Li, Na, K, Rb) como SEMAPAQUI - Curso de Quântica - Parte III

mas para qualquer elemento... Isso se tornou valioso para resolver A fórmula de Rydberg e o princípio de Rayleigh & Ritz diziam que se podia usar fórmulas semelhantes não apenas para os metais alcalinos, mas para qualquer elemento... Isso se tornou valioso para resolver o problema do Sol... Voltemos a ele. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III No diagrama abaixo mostramos apenas as linhas mais proeminentes. A composição do Sol é aproximadamente 73% de hidrogênio, 25% de hélio e 0,77% de oxigênio, 0,29% de carbono, 0,16% de ferro etc. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A análise de qualquer corpo celeste pode ser feita por inspeção, simplesmente comparando-se o espectro obtido com os espectros individuais dos elementos... SEMAPAQUI - Curso de Quântica - Parte III

...inclusive longínquas galáxias. Evidentemente estas técnicas podem ser usadas para analisar não apenas o Sol, mas qualquer corpo celeste... ...inclusive longínquas galáxias. Daí o interesse de um outro ramo da Ciência. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Astrofísica SEMAPAQUI - Curso de Quântica - Parte III

Suponha que haja interesse numa certa estrela de uma certa galáxia. As primeiras perguntas a se responder geralmente são, Qual é a cor ( m ) da estrela? Qual é a temperatura da estrela? Qual é a composição da estrela? SEMAPAQUI - Curso de Quântica - Parte III

Classificação de galáxias Existe todo um sistema de classificação baseado na informação obtida de espectros de microondas. Metais de transição 3d têm núcleos muito estáveis. 56Fe tem a menor razão massa/núcleo, por isso ele é o produto final das reações termonucleares que “alimentam” as estrelas. Os núcleos vizinhos do Fe são quase tão estáveis. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III No espaço intergalático há muitas moléculas diatômicas, daí o interesse neste tipo de sistema... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Exemplos: TiO e VO São muito abundantes nos espectros de estrelas vermelhas frias do tipo M. Os sistemas de TiO são tão intensos que são usados para classificação espectral de estrelas do sistema MK. Os sistemas de VO são usados para classificação das estrelas mais frias M7-M9, pois aí as bandas de TiO estão saturadas. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Exemplo: CrO É abundante no “protótipo” de gigante vermelha  Pegasi. Apenas cinco quintetos são conhecidos. O estado fundamental deveria ser... (9)1(1)2(4)1 5, com estados de transferência de carga 7 e 7 na faixa de 1 a 1,5 eV acima. Nada se sabe sobre os singletes e tripletes. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A estrela é vermelha por causa do forte sistema B5 X5 em 605 nm, que sofre inúmeras pequenas perturbações rotacionais. Esta densidade é tão alta que sugere um grande número de estados de baixa energia. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Os astrofísicos têm em mãos um monte de espectros que não podem analisar por que não têm referência, nem experimental nem de cálculo, para comparar. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Anthony J. Merer Trabalhou com Herzberg & Douglas (Ottawa, 1963-5) e Mulliken (Chicago, 1966). É o líder do laboratório de espectroscopia de alta resolução na Universidade de British Columbia. Desde 1995 é Editor do J. Mol. Spectroscopy. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Análise dos muitos espectros de infravermelho e microondas tirados de estrelas é um campo aberto para os químicos. Quem gostar disso, comece a calcular. SEMAPAQUI - Curso de Quântica - Parte III

Nosso trabalho Estudamos a espectroscopia de moléculas diatômicas contendo metais de transição em nível ab initio usando funções de onda correlacionadas. SEMAPAQUI - Curso de Quântica - Parte III

Por que diatômicas de MTs ? São difíceis de caracterizar. Fornecem um primeiro modelo para o estudo da atividade catalítica de MTs. Têm grande importância na Astrofísica (classificação de galáxias). Química de materiais e na química de compostos organometálicos. SEMAPAQUI - Curso de Quântica - Parte III

Dificuldades esperadas As energias de dissociação são geralmente muito pequenas (da ordem de 2-3 eV). Apresentam grande densidade de estados eletrônicos em baixas energias. É difícil obter uma descrição correta (mesmo qualitativa!) usando um determinante apenas. SEMAPAQUI - Curso de Quântica - Parte III

Mononitreto de cobalto (CoN) Até alguns anos atrás, não havia nenhum estudo, teórico ou experimental, disponível na literatura. Não se conhece o estado fundamental, embora haja algumas sugestões... SEMAPAQUI - Curso de Quântica - Parte III

Revisões importantes Harrison e Merer publicaram as revisões mais importantes e completas. O estado fundamental do FeO (que é isoeletrônico do CoN) é um 5 (como obtido do espectro de microondas). Harrison aventa algumas possibilidades para o estado fundamental do CoN. Ref.: J.F. Harrison, Chem. Rev. 100(2), 679-716 (2000). SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A.C. Borin estudou em detalhe o NiC, que é isoeletrônico do com. Concluiu que o mais sério candidato a estado fundamental do NiC é 1Σ+. Ref.: A.C. Borin, Chem. Phys. 274, 99-108 (2001). SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Trabalhos recentes Recentemente alguns grupos têm dado atenção ao CoN numa tentativa de caracterizar seu estado fundamental... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Infravermelho e DFT Andrews e seus colaboradores vaporizaram Co e Ni com laser, e os codepositaram com nitrogênio a 10 K. Obtiveram o seu espectro de infravermelho, e associaram a absorção a 826 cm-1 com CoN. Para confirmar, fizeram alguns cálculos em nível DFT. Ref.: L. Andrews, J. Phys. Chem. A 102(15), 2561-2571 (1998). SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Segundo Andrews e colaboradores: Os três estados de mais baixa energia para o CoN devem ser 1Σ+, 3Π e 5Δ. O estado fundamental sugerido é o 5, a uns 6 kcal.mol-1 abaixo do 1Σ+, enquanto que o 3Π estaria 5 kcal.mol-1 abaixo do 1Σ+. SEMAPAQUI - Curso de Quântica - Parte III

MR-SDCI Em 2003, Yamaki, Sekiya e Tanaka publicaram um estudo sobre CoN baseado em cálculos CASSCF, MR-SCDI, MR-SCDI+Q e MR-CPA usando uma base extendida de Clementi e Roetti. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Segundo Yamaki e colaboradores: Os três estados de mais baixa energia para o CoN são 1Σ+, 3Π e 5Δ. O estado fundamental é 1Σ+, apesar do estado 5 estar 0,223 eV abaixo deste em nível MR-SDCI. Ref.: T. Yamaki, Chem. Phys. Lett. 376, 487-492 (2003). SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Resultados CASSCF de Yamaki: O estado ligado de mais baixa energia é claramente o 1Σ+. Entretanto, as diferenças de energia entre os estados é muito pequena. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Em cima da referência CAS-SCF, foram executados cálculos MR-SDCI: O estado de mais baixa energia é o 5∆. O estado 3Π se encontra muito próximo do 3Φ. SEMAPAQUI - Curso de Quântica - Parte III

Método Multiconfiguracional Este método otimiza simultaneamente os orbitais e os coeficientes da expansão da função de onda de ordem zero, a qual geralmente consiste de uma configuração de referência, mais excitações simples e duplas desta configuração. Este espaço ativo, quando é completamente otimizado, caracteriza o método CASSCF. Ref.: M.W. Schmidt & M.S. Gordon, Ann. Rev. Phys. Chem. 49, 233-266 (1998). SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Conjunto de base  Cobalto: base Gaussiana derivada do conjunto (14s,9p,5d) de Watchers aumentada de funções 2p, 1d e 3f como sugerido por Bauschlicher.  Nitrogênio: base de qualidade cc-pVTZ sugerida por Dunning & Woon.  Total de 95 funções de base contraídas. O espaço variacional é restrito aos harmô- nicos esféricos, logo um total de 83 funções de base foi usado. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Programa GAMESS Apresenta um algoritmo eficiente para cálculos multiconfiguracionais. Apresenta várias opções de cálculos para recuperação de efeitos de correlação. Apresenta código livre. Efetua os cálculos em tempo razoável. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Escolha dos orbitais de caroço NCORE CASSCF NDETS NOC E+1435.0, u.a. Tempo, min ‡ 6 22,12 50 18 -0,4629688334 ≈ 3 22,14 33168 20 -0,7073045076 ≈ 20 22,15 466685 21 -0,7261241427 ≈ 700 22,16 4770434 22 -0,7473601952 ≈ 3000 10 14,10 3648 -0,688333943 ≈ 11 14,12 156848 -0,7218752851 ≈ 59.1 14,14 2945952 24 < -0,749 ₮ ≈ 7000 14,16 32724586 26 † † Cálculo proibitivo com nossos atuais recursos computacionais. ‡ Tempo médio para completar o job num Athlon 64, 2Gbytes RAM. ₮ Cálculo que não convergiu, parando antes de sua finalização. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Montagem do MCSCF Orbitais de caroço, otimizados no MCSCF: Co 1s, 2s e 2p e N 1s. Orbitais ativos, otimizados no MCSCF: Co 3s, 3p, 4s e 3d e N 2s e 2p. Níveis de cálculo utilizados foram o CASSCF(22,14), CASSCF(22,15) e CASSCF(22,16). Ref.: M.W. Schmidt & M.S. Gordon, Ann. Rev. Phys. Chem. 49, 233-266 (1998). SEMAPAQUI - Curso de Quântica - Parte III

Descrição dos orbitais otimizados Os orbitais descritos a seguir correspondem aos orbitais do estado 1Σ+ obtidos a uma distância de 3,0 u.a. após otimização completa do espaço ativo: ● Orbitais de caroço: 6. ● Orbitais ativos: 14. ● Orbitais externos: 3. SEMAPAQUI - Curso de Quântica - Parte III

Diagrama de energia dos orbitais moleculares do CoN SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Os orbitais de caroço mais internos do CoN. Diagrama não está em escala. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Orbitais ativos SEMAPAQUI - Curso de Quântica - Parte III

Escolha dos níveis do CASSCF Número de determinantes Estado  (22,14) (22,15) (22,16) 1+ 33168 466685 4770434 3 22784 341497 3644032 5 6908 131477 1601050 SEMAPAQUI - Curso de Quântica - Parte III

Curvas de potencial A seguir são apresentadas as curvas de potencial para os três níveis de CASSCF. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Curva de potencial CASSCF(22,14) Resultados do cálculo CASSCF(22,14) para os três estados. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Curva de potencial CASSCF(22,15) Resultados do cálculo CASSCF(22,15) para os três estados. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Curva de potencial CASSCF(22,16) Resultados do cálculo CASSCF(22,16) para estado singlete. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Descrição do caráter das funções A função de onda CASSCF(22,14), (22,15) e (22,16) do estado 1+ podem ser escritas como: | 1+ >  0,83 |...24 72 82 14 34 92 40 > + 0,22 |...24 72 82 14 32 92 42 > + ... 0,22 |...24 72 82 14 32 92 42 > + ... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A função de onda CASSCF(22,14) e (22,15) do estado 3Π podem ser escritas como: | 3 >  0,46 |...24 72 82 14 33 92 41 > + 0,46 |...24 72 82 14 33 92 41 > + ... | 3 >  0,57 |...24 72 82 14 33 92 41 > + 0,57 |...24 72 82 14 33 92 41 > + ... SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III A função de onda CASSCF(22,14) e (22,15) do estado 5∆ podem ser descritas como: | 5 >  0,32 |...24 72 82 13 34 91 42 > + 0,32 |...24 72 82 13 34 91 42 > + ... | 5 >  0,33 |...24 72 82 13 34 91 42 > + 0,33 |...24 72 82 13 34 91 42 > + ... SEMAPAQUI - Curso de Quântica - Parte III

Descrição dos orbitais otimizados Orbitais ativos otimizados, com representações Euclidianas e espaciais. Estado: 1Σ+ Distância: 3,0 u.a. CASSCF(22,14) SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Orbital 7 (ligante) SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Figura do orbital 82. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Figura do orbital 34. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Figura do orbital 14 (não-ligante) SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Figura do orbital 92. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Figura do orbital 40. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Figura do orbital 100. SEMAPAQUI - Curso de Quântica - Parte III

Cálculos FSOCI sobre a referência CASSCF Nesta etapa, são otimizados apenas os coeficientes da expansão da função de onda. A partir da função de onda de ordem zero (já otimizada na etapa CASSCF), executa-se um CI de segunda ordem que inclui mais orbitais no espaço ativo — os orbitais externos especificados na palavra-chave NEXT. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Como ainda há diversas moléculas diatômicas (e mesmo triatômicas) para as quais as constantes espectroscópicas não são conhecidas, este protocolo pode ser repetido sem maiores complicações… SEMAPAQUI - Curso de Quântica - Parte III

Mononitreto de ferro (FeN) Este é outro sistema cujo primeiro espectro foi obtido por Andrews e Chertihin. Alguns cálculos DFT foram publicados, mas nenhum deles foi conclusivo. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Nossos resultados SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Descrição do caráter das funções A função de onda em nível CASSCF(22,16) do FeN podem ser escritas como: | 1+ >  0,83 |...24 72 82 14 34 92 40 > + 0,22 |...24 72 82 14 32 92 42 > + ... 0,22 |...24 72 82 14 32 92 42 > + ... SEMAPAQUI - Curso de Quântica - Parte III

Alguns orbitais otimizados orbital 404 orbital 40. SEMAPAQUI - Curso de Quântica - Parte III

SEMAPAQUI - Curso de Quântica - Parte III Perspectivas futuras  Estudar algumas moléculas triatômicas e tetratômicas, para interpretação dos espectros.  Estudar clusters de metais de transição  Passar para a terceira fila dos metais de transição  Obter mais constantes espectroscópicas para auxiliar a parametrização de um método semi-empírico bom para geometrias e espectroscopia. SEMAPAQUI - Curso de Quântica - Parte III

anos e anos de divertimento Conclusões Ainda existem muitos problemas interessantes (e coloridos) na Natureza, o que nos garante anos e anos de divertimento tentando entendê-los. SEMAPAQUI - Curso de Quântica - Parte III