Conceitos Fundamentais

Slides:



Advertisements
Apresentações semelhantes
PROPRIEDADES MAGNETICAS DE MATERIAIS
Advertisements

(semelhante ao fluxo de água vA)
5. Fontes do campo magnético: campo magnético criado por uma corrente num condutor (lei de Biot-Savart, lei de Ampère), magnetismo na matéria. Em 1820,
 módulo do campo eléctrico em toda a parte da superfície esférica
Aula 2 – Conceitos Fundamentais I
Rotacional de um campo vectorial
MATERIAIS MAGNÉTICOS Fundamentos iniciais
AULA XII Campos Magnéticos
CF096 Física Básica Teórica V Prof. Dante Mosca
Equações de Maxwell do Eletromagnetismo
Tópicos de ondulatória: classificação, princípios e fenômenos
TE804 Eletrodinâmica Computacional
TE804 Eletrodinâmica Computacional
Capítulo 1 Dipolo Eletromagnético
Equação de onda Agora que as equações de Maxwell estão completas, vamos ver se o campo eletromagnético pode ter comportamento ondulatório. Se conseguirmos.
ONDAS IVAN SANTOS. Podemos definir onda como uma variação de uma grandeza física que se propaga no espaço. É um distúrbio que se propaga e pode levar.
Magnetostática Cap. 5 Equações da magnetostática
EQUAÇÕES DE MAXWELL ENGC34 – ELETROMAGNETISMO APLICADO…
Energia As ondas electromagnéticas transportam energia electromagnética Meios simples ε, μ, σ não variam no tempo V ^ n ~ Sf Energia armazenada nos campos.
Conceitos Fundamentais – Aula 4
PROE 1S0607 CFI Aula CFI – AULA 2 Ondas electromagnéticas.
Radiação Aula 1 Introdução à Radiação
Electro Magnetismo Electromagnetismo Corrente eléctrica alternada
5. Fontes do campo magnético: campo magnético criado por uma corrente num condutor (lei de Biot-Savart, lei Ampère), magnetismo na matéria. Em 1820, Hans.
Unidade 2 – Onda Plana Uniforme
Ondas Eletromagnéticas Formalismo Relativistico
Indução Eletromagnética
Condutores, Dielétricos e Capacitância
Cap. 5 – Introdução à análise diferencial de escoamentos
Eletrodinâmica Aula 12 Prof Paulo Rosa INFI/UFMS.
Equações de Maxwell Aula 13 Prof Paulo Rosa INFI/UFMS.
UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ONDAS E LINHAS ELETROMAGNÉTICAS RELAÇÕES.
Comunicação de Informação a Curtas Distâncias
Campos elétricos na matéria
Ondas Eletromagnéticas
Ondas Eletromagnéticas
Equações de Maxwell Prof. Luis S. B. Marques
Processo de Radiação A problemática do estudo de antenas consiste em calcular o Campo Elétrico e o Campo Magnético no espaço provocado pela estrutura da.
Eletromagnetismo Indução Magnética 1.
MOVIMENTO ONDULATÓRIO
O Magnetismo e a Matéria
Processo de Radiação A problemática do estudo de antenas consiste em calcular o Campo Elétrico e o Campo Magnético no espaço provocado pela estrutura da.
2. FORMAS INTEGRAIS DAS LEIS FUNDAMENTAIS
PROE 2S0506 CFI Aula Ondas Electromagnéticas Ondas planas: O lugar geométrico onde os valores das grandezas ondulatórias são constantes são planos.
MOVIMENTO ONDULATÓRIO
PROE Rad Radiação Aula 1 Introdução à Radiação Geração de Ondas Electromagnéticas Antenas de emissão – realizam a transição entre as ondas guiadas.
1PROE1S0708 CFAula Conceitos Fundamentais – Aula 3.
1 FLUXO ELÉCTRICO O fluxo eléctrico é uma grandeza proporcional ao número das linhas do campo eléctrico que entram numa superfície O número de linhas N.
Linhas de transmissão.
PROE CFI Aula Polarização de Ondas Electromagnéticas.
1S0809 CF Conceitos Fundamentais – Aula 2.
PROE CFI Aula Polarização de ondas electromagnéticas CFI – Aula 4.
MOVIMENTO ONDULATÓRIO
 LINHAS DE CAMPO MAGNÉTICO NUMA ESPIRA CIRCULAR
PROE1S0708 CFIAula Conceitos Fundamentais – Aula 2.
ROTAÇÃO DE UM CORPO RÍGIDO O eixo fixo é denominado eixo de rotação
1 Conceitos Fundamentais – Aula 4 Aula 4 CF 1 Out 08.
ELECTRICIDADE: Fluxo e Lei de Gauss Aula – 4
Electromagnetismo.
Conceitos Fundamentais I
Capítulo 1 Equações de Maxwell
ELETROMAGNETISMO Imãs -corpos que tem o poder de atrair ferro e que interagem entre sí.
ELECTRICIDADE: Capacitores e Dieléctricos Aula – 6
INDUÇÃO ELETRO MAGNÉTICA
Prof. Nilton Cesar de Oliveira Borges
INDUÇÃO ELETRO MAGNÉTICA
A experiência demonstrou que cargas eléctricas em movimento criam, no espaço à sua volta, um campo magnético. Verificou,
Hidrodinâmica Aula 02 (1 0 Sem./2016) 1. Redução do contínuo ao discreto: 2 Partição do fluido em pequenos elementos de volume infinitesimal dV e massa.
Aula nº1 12/09/ Electromagnetismo Paulo J. V. Garcia Departamento de Engenharia Física.
CENTRO DE MASSA E MOMENTO LINEAR
Transcrição da apresentação:

Conceitos Fundamentais CF Aula1 19.09

Notação Rotacional de um campo vectorial Vector Versor Produto interno Produto externo Tensor Nabla Gradiente de um campo escalar Divergência de um campo vectorial Notação CF Aula1 19.09

Equações de Maxwell Leis do electromagnetismo são regidas pelas equações de Maxwell. Eqs. Maxwell baseadas em trabalhos de Faraday, Gauss, Ampére, etc. (sec. XIX). Força de Lorentz: Campos vectoriais (campo eléctrico) e (indução magnética) grandezas fundamentais de campo electromagnético. Podem ser determinadas por experimentação. Campos vectoriais auxiliares: deslocamento eléctrico , campo magnetico Em espaço livre: Permeabilidade magnética , permitividade CF Aula1 19.09

Lei de Faraday A circulação de ao longo do contorno fechado Гf = - variação temporal do fluxo da indução magnetica através de A. A CF Aula1 19.09

Teorema de Helmholtz (cálculo vectorial) Teorema de Stokes (cálculo vectorial) Circulação (integral de linha) de um campo vectorial ao longo de uma linha fechada Гf = fluxo do rotacional de através de A.  Teorema de Helmholtz (cálculo vectorial) Um campo vectorial fica completamente definido quando forem conhecidos e em todos os pontos do espaço. CF Aula1 19.09

Teorema da divergência (cálculo vectorial) Lei de Gauss O fluxo total de que sai dum volume V limitado por Sf é igual à carga eléctrica total contida nesse volume. Teorema da divergência (cálculo vectorial)  CF Aula1 19.09

Campo magnético Lei de Ampére A fonte que cria a circulação (ou rotacional) do campo magnético é Lei de Ampére Grande contribuição de Maxwell: adicionar o termo Eqs. compatíveis com o principio da conservação da carga e permitiu prever a propagação de ondas electromagnéticas (~20 anos antes de Hertz ter verificado as previsões teóricas). CF Aula1 19.09

Teorema de Stokes do cálculo vectorial Termo Teorema de Stokes do cálculo vectorial Divergência de Não foram encontrados até agora cargas magnéticas Teorema da divergência CF Aula1 19.09

traduz um fluxo de cargas eléctricas livres. Como a carga se conserva Termo traduz um fluxo de cargas eléctricas livres. Como a carga se conserva  Eq. da continuidade Teorema da divergência  CF Aula1 19.09

CF Aula1 19.09

Eqs. de Maxwell Sabendo  e tem-se 12 incógnitas e 8 eqs. Eqs. adicionais resultam das relações entre campos impostas pelas características do meio, relações Constitutivas. CF Aula1 19.09

Temporalmente dispersivos Espacialmente dispersivos Relações constitutivas A resposta do meio a um estímulo electromagnético depende das suas características. Propriedades dos meios Homogéneos Lineares Isótropos Anisotropos Temporalmente dispersivos Espacialmente dispersivos Meios simples: com comportamento linear, isótropos e sem dispersão espacial. CF Aula1 19.09

Comportamento dieléctrico Meios materiais Comportamento dieléctrico Resposta do meio a um campo electromagnético estático e uniforme é descrita em termos de momentos dipolares eléctricos induzidos. Campo eléctrico cria momento dipolar eléctrico. - vector polarização eléctrica CF Aula1 19.09

Meios materiais Comportamento magnético Materiais não ferromagnéticos: Quando se aplica um campo magnético são induzidas pequenas correntes microscópicas que se opõem nos seus efeitos magnéticos às variações do campo aplicado. Comportamento diamagnético,momentos magnéticos em oposição ao campo magnético. Comportamento paramagnético, há a possibilidade de alinhar os momentos magnéticos atómicos individuais e o campo magnético intensifica-se. Materiais ferromagnéticos: os momentos magnéticos induzidos são muito mais intensos do que nos materiais com comportamento magnético ordinário. CF Aula1 19.09

Magnetização Correntes microscópicas induzidas (Correntes Amperianas). Magnetização - momento dipolar magnético por unidade de volume. A densidade de corrente associada às correntes microscópicas é dada por e tem-se CF Aula1 19.09

Descrição dos comportamentos dieléctrico e magnético Em termos de momentos dipolares induzidos só é rigorosamente válida no caso dos campos estáticos uniformes (separação completa de efeitos eléctricos e magnéticos). Regimes variáveis no tempo Meios isotrópicos simples sem dispersão espacial  relações entre e e entre e descritas cada uma por uma convolução temporal. No domínio da frequência significa um relacionamento multiplicativo entre as transformadas de Fourier de e e de e . CF Aula1 19.09

Equações de Maxwell em Meios Materiais Num meio dieléctrico simples, para além da carga livre  existe também carga de polarização p, que tem origem nos dipolos eléctricos induzidos provocados pelo campo eléctrico aplicado (separação de cargas negativas e positivas). Recorrendo ao vector de polarização constituído pela densidade volúmica do momento dos dipolos eléctricos induzidos no meio. A introdução de tem a vantagem de invocar apenas a densidade de carga livre. CF Aula1 19.09

Corrente de polarização Corrente livre Corrente Amperiana Corrente de polarização Corrente deslocamento de vácuo O rotacional da indução magnética (circulação ao longo de qualquer caminho fechado) é determinado pela densidade de corrente total. CF Aula1 19.09

Equações de Maxwell em termos de D e H A introdução dos campos e facilita a escrita das equações de Maxwell mas torna necessário arranjar um modelo para descrever os meios. CF Aula1 19.09

Ondas Electromagnéticas A descrição de uma estrutura ondulatória envolve coordenadas espaciais e a coordenada temporal. Nem todas as funções f(x,y,z,t) são ondas. Ondas Planas O lugar geométrico dos pontos em que os valores das grandezas ondulatórias são constantes, são planos. As ondas planas são muito importantes porque: A grande distância das fontes as ondas esféricas e cilíndricas podem ser localmente aproximadas por ondas planas Qualquer tipo de onda pode ser sintetizado (via integral de Fourier em vectores de onda) à custa de ondas planas elementares. CF Aula1 19.09

Meio homogéneo, isótropo e sem fontes ou espaço livre. Equações de Onda Meio homogéneo, isótropo e sem fontes ou espaço livre. Equações de onda CF Aula1 19.09

Propagação de Ondas Planas e Uniformes Admitamos (para simplificar) que só dependem de z. Todas as funções acima representam movimento ondulatório CF Aula1 19.09

Uma onda não é necessariamente um fenómeno repetitivo no tempo. O que é uma onda? É um fenómeno físico que ocorre num local num dado instante e é reproduzido noutros lugares em instantes posteriores, sendo o atraso proporcional à distância de cada local à primeira posição. Uma onda não é necessariamente um fenómeno repetitivo no tempo. (Ex: Tsunami). CF Aula1 19.09

Se houver apenas onda incidente: E = f (z – ct) CF Aula1 19.09

Variação Temporal Harmónica Os geradores produzem tensões e correntes, e portantos campos eléctrico e magnético que variam sinusoidalmente no tempo. Qualquer variação periódica pode ser analisada em termos de variações sinusoidais com frequências que reproduzem o conteúdo espectral do estímulo electromagnético. CF Aula1 19.09

CF Aula1 19.09