A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Professor: Diones Charles

Apresentações semelhantes


Apresentação em tema: "Professor: Diones Charles"— Transcrição da apresentação:

1 Professor: Diones Charles
Vetores Disciplina: Física 2 Professor: Diones Charles

2 GRANDEZAS FÍSICAS Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente. Deste modo, grandezas físicas são as que podem ser medidas. São divididas em dois grupos: escalares e vetoriais.

3 GRANDEZAS ESCALARES E VETORIAIS
Grandezas escalares: ficam totalmente expressas por um valor e uma unidade. Exemplos: temperatura, massa, calor, tempo, etc. Grandezas vetoriais: são aquelas que não ficam totalmente determinadas com um valor e uma unidade, para que fiquem totalmente definidas necessitam de módulo (número com unidade de medida), direção e sentido. Exemplos: velocidade, força, aceleração, etc.

4 Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para representar uma grandeza física. Sendo assim, surgiu uma representação matemática que expressa outras característica de uma grandeza... O VETOR

5 O que é um Vetor? É um ente matemático representado por um segmento de reta orientado. E tem algumas características básicas. Possuí módulo. (Que é o comprimento da reta) Tem uma direção. E um sentido. (Que é pra onde a “flecha” está apontando). Módulo Sentido Direção da Reta Suporte

6 PRINCIPAIS CARACTERÍSTICAS DE UM VETOR
Módulo: comprimento do segmento (através de uma escala pré-estabelecida). O módulo de um vetor é indicado utilizando-se duas barras verticais. |A| (Lê-se: módulo de A) Direção: reta que contém o segmento Sentido: orientação do segmento

7 Representação de uma Grandeza Vetorial
As grandezas vetorial são representadas da seguinte forma: a letra que representa a grandeza, e uma a “flechinha” sobre a letra. Da seguinte forma... d V F

8 REPRESENTAÇÃO GRÁFICA DE UM VETOR
Para representar graficamente um vetor usamos um segmento de reta orientado. O módulo do vetor, representa numericamente o comprimento de sua seta. O vetor acima tem módulo igual a 3 u, que é igual a distância entre os pontos A e B. Para indicar vetores usamos as seguintes notações: V AB onde: A é a origem e B é a extremidade

9 Comparação entre vetores
Vetores Iguais a b r s Mesmo Módulo Mesma Direção Mesmo Sentido a = b O vetor a é igual ao vetor b.

10 Comparação entre vetores
Vetores Opostos a b r s c t Sobre os vetores b e c podemos afirmar: Tem o mesmo módulo, mesma direção mas sentidos opostos. a = b = - c O vetor c é oposto aos vetores a e b.

11 Soma Vetorial Através da soma vetorial encontramos o vetor resultante.
O vetor resultante seria como se todos os vetores envolvidos na soma fossem substituídos por um, e este tivesse o mesmo efeito. Existem duas regras para fazer a soma vetores.

12 Regra do Polígono b a c Determinarmos a soma a + b + c
É utilizada na adição de qualquer quantidade de vetores. Exemplo: b a c Determinarmos a soma a + b + c Para isto devemos posicionar cada vetor junto ao outro de forma que a extremidade de um vetor coloca-se junto à origem do outro. E o vetor soma, ou também chamado vetor resultante, será o vetor que une a origem do primeiro do primeiro com a extremidade do último, formando assim um polígono.

13 Fazendo a Soma através da Regra do Polígono
b c

14 Regra do Paralelogramo
É utilizada para realizar a adição de apenas dois vetores. Exemplo: a b Determinar a soma a + b. Para isto devemos posicionar a origem dos dois vetores no mesmo ponto e traçar uma reta paralela a cada um passando pela extremidade do outro. E o vetor soma, ou também chamado vetor resultante, será o vetor que une a origem dos dois vetores com o cruzamento das duas retas paralelas a cada vetor, formando assim um paralelogramo.

15 Fazendo a Soma através da Regra do Paralelogramo
Reta Paralela ao vetor b e que passa pela extremidade do vetor a. a b α R Reta Paralela ao vetor a e que passa pela extremidade do vetor b. E o módulo, ou seja, o valor desse vetor resultante será dado por: R = a + b + 2.a.b.cos α 2

16 Regra do Paralelogramo: Casos Particulares
2º ) α = 180º S = a - b 1º ) α = 0º S = a + b Sendo assim, qualquer que seja o ângulo entre os dois vetores o valor da resultante será: | a – b | ≤ R ≤ a + b 3º ) α = 90º S = a + b 2

17 Subtração de vetores b a
Considere os dois vetores a seguir: a b Realizar a subtração, a – b, é como somar a mais um vetor de mesma intensidade, mesma direção mas de sentido oposto ao do vetor b originalmente representado. Na realidade, estaremos fazendo a adição do vetor a com um vetor oposto ao vetor b ( a + (-b) ).

18 Fazendo a Subtração de Vetores

19 MÉTODO ANALÍTICO Podemos encontrar o módulo da resultante de dois vetores, sabendo-se apenas o módulo dos vetores e o ângulo entre eles. Exemplos: Sejam dois vetores de módulos A e B, e que formam entre si um ângulo θ. Se θ = 0º, os vetores são paralelos, têm a mesma direção e mesmo sentido, conforme figura abaixo: V V2 O módulo do vetor resultante entre estes dois vetores será a soma dos módulo dos dois, chamado de resultante máxima.

20 2) Se θ = 180º, os vetores são paralelos, têm a mesma direção e sentidos opostos, conforme figura abaixo: V V2 O módulo do vetor resultante entre estes dois vetores será a diferença dos módulo dos dois, chamado de resultante mínima. 3) Se θ = 90º, os vetores são perpendiculares, conforme figura abaixo: A B O módulo do vetor resultante entre estes dois vetores será a raiz quadrada da soma dos quadrados dos módulo dos dois (teorema de Pitágoras).

21 4) Se θ, for um ângulo qualquer, diferente dos mencionados anteriormente, os vetores são oblíquos, conforme figura abaixo: θ A B O módulo do vetor resultante entre estes dois vetores será dada pela lei dos cosenos:

22 DECOMPOSIÇÃO VETORIAL
A decomposição de vetores é usada para facilitar o cálculo do vetor resultante. Deste modo, podemos escrever ainda: A2 = Ax2 +Ay2

23 MULTIPLICAÇÃO DE UM VETOR POR UM NÚMERO REAL
Ao multiplicarmos um vetor qualquer (A) por um número real (n) positivo ou negativo, inteiro ou fracionário, obtemos como resultado um vetor produto (P), com as seguintes condições: O módulo do vetor P é igual a n x |A|. A direção é a mesma de A. O sentido é igual ao de A se n for positivo ou sentido oposto ao de A se n for negativo.


Carregar ppt "Professor: Diones Charles"

Apresentações semelhantes


Anúncios Google