A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Aula Teórica 8 Difusividade, Viscosidade, Fluxo difusivo e Tensões de corte e Equação de Evolução.

Apresentações semelhantes


Apresentação em tema: "Aula Teórica 8 Difusividade, Viscosidade, Fluxo difusivo e Tensões de corte e Equação de Evolução."— Transcrição da apresentação:

1 Aula Teórica 8 Difusividade, Viscosidade, Fluxo difusivo e Tensões de corte e Equação de Evolução

2 Taxa de Acumulação e Equação de Evolução A taxa de variação de uma propriedade num sistema material de dimensões infinitesimais é dada pela derivada total. Porque variam as propriedades? – Pelas fontes e poços ou porque a propriedade pode deslocar-se por meios diferentes da velocidade (e.g. difusão, radiação), – Pelas fontes ou poços descritas nos princípios de conservação (e.g. Forças no caso da quantidade de movimento).

3 Equação de evolução A derivada convectiva resulta da divergência do fluxo convectivo (ou advectivo). Afinal o que é a difusão? É a consequência da definição de velocidade.

4 Definição de velocidade A figura representa moléculas de dois fluidos em repouso. A velocidade mede o volume de moléculas que passa por unidade de área. Se a velocidade for nula, o volume que passa num sentido é igual ao que passa no sentido contrário. CxCx C x+x

5 Difusão Mas as moléculas têm movimento browniano e por isso - num fluido - estão sempre a mudar de posição relativa. Se as moléculas que estão de um lado da superfície forem iguais às que estão do outro lado, o saldo é estatisticamente nulo. Se a concentração for diferente, então existirá um saldo com um fluxo resultante orientado da concentração maior para a menor.

6 Fluxo difusivo por unidade de área Na direcção x:

7 Equação de evolução Porque motivo a equação da continuidade não tem fluxo difusivo? Ou:

8 O caso da quantidade de Movimento A taxa de variação da quantidade de movimento é igual ao somatório das forças aplicadas e por isso o fluxo difusivo pode ser visto como uma força: É a força de atrito A difusividade de quantidade de movimento chama-se viscosidade.

9 Viscosidade A força de atrito aparece quando as moléculas que passam de um lado para o outro da superfície têm velocidade diferente. O gradiente que gera o atrito é por isso o gradiente de velocidade. Existindo gradiente de velocidade, as moléculas têm que ser aceleradas ou desaceleradas. Como consequência vão alterar a sua quantidade de movimento. A variação da quantidade de movimento implica a existência de aceleração e a foça vai ser proporcional à massa. Por unidade de volume teremos:

10 Gradiente de velocidade e taxa de deformação δθ δyδy δxδx δuδtδuδt Mas, no caso infinitesimal E a tensão de corte é proporcional à taxa de deformação de um elemento de fluido δyδy δuδu u(y)

11 Síntese A tensão de corte é o fluxo difusivo de quantidade de movimento. A tensão de corte é tangente à velocidade e origina um fluxo de quantidade de movimento perpendicular à velocidade, no sentido contrário do gradiente de velocidade. A velocidade tem 3 componentes e por isso o seu gradiente tem 9 (cada uma das 3 componentes pode variar nas 3 direcções do espaço).

12 O tensor das tensões A tensão de corte é por isso representada por um tensor com 9 componentes. A componente i da velocidade pode variar em qualquer das direcções j do espaço, dando origem a 3 forças. O conjunto das tensões é o tensor:

13 Pensemos num volume infinitesimal com a forma de um cubo e na componente 1 da velocidade (representada a verde). Esta componente pode varia na direcção 1, na direcção 2 e na direcção 3, dando origem respectivamente às tensões

14 Estas tensões actuam nas faces do cubo com normais nas direcções 1, 2 e 3. Existem duas faces para cada uma das direcções. A resultante das forças é a diferença entre as tensões que actuam em faces correspondentes, que por unidade de volume dá: A convenção de sinais é: o que entra é positivo.

15 Como determinar as tensões? São proporcionais ao gradiente de velocidade, Não pode haver efeito de pressão (a força é tangencial): E o momento resultante sobre um volume de controlo tem que ser nulo (caso contrário teria aceleração angular).

16 Caso geral O sistema de tensões segundo x criaria um binário. Para o equilibrar tem que haver outro binário equilibrado por tensões iguais segundo y.

17 Expressão geral da Tensão de corte Quando i=j esta expressão dá a divergência da velocidade, que se o fluido for compressível tem que ser anulada. A expressão geral fica:


Carregar ppt "Aula Teórica 8 Difusividade, Viscosidade, Fluxo difusivo e Tensões de corte e Equação de Evolução."

Apresentações semelhantes


Anúncios Google