A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Mecânica dos Fluidos Conservação da Energia Prof. Carlos Ruberto Fragoso Jr.

Apresentações semelhantes


Apresentação em tema: "Mecânica dos Fluidos Conservação da Energia Prof. Carlos Ruberto Fragoso Jr."— Transcrição da apresentação:

1 Mecânica dos Fluidos Conservação da Energia Prof. Carlos Ruberto Fragoso Jr.

2 Programa da aula Revisão Teorema de Transporte de Reynolds Equação da Conservação da Massa Equação da Quantidade de Movimento Equação da conservação da Energia; Equação de Bernoulli; Exemplo.

3 Propriedade intensivas e extensivas

4 ou Teorema do Transporte de Reynolds Com base nas equações de sistemas e por meio de uma comparação entre sistema e volume de controle, obtemos uma relação fundamental:

5 Conservação da quantidade de movimento Partindo do Teorema do Transporte de Reynolds: Para deduzir a formulação para o volume de controle da conservação da quantidade de movimento, fazemos:

6 Equação da conservação da massa Partindo do Teorema do Transporte de Reynolds: Para deduzir a formulação para volume de controle da conservação de massa, fazemos:

7 Equação da conservação da massa Que substituídos na equação genérica do TTR fornece: Da conservação da massa do sistema:

8 Equação da conservação da massa Balanço Geral para a conservação da massa em um volume de controle Variação interna da massa no V.C. Fluxos de entrada e saída na S.C.

9 Conservação da quantidade de movimento Conservação da quantidade de movimento em um volume de controle Variação da quantidade de movimento com o tempo no V.C. Fluxos de entrada e saída de quantidade de movimento através da S.C. Soma das forças que atuam sobre o sistema

10 Conservação da quantidade de movimento Distinguimos dois tipos de força que se combinam para dar lugar a : Forças de superficiais ou contato: exigem, para sua aplicação, o contato físico Forcas de campo ou mássicas: Um dos corpos gera um campo e quaisquer corpos que estejam sob sua influência e apresentarem as condições corretas, experimentarão forças de campo onde Forças gravitacionais: Pressão (normais) e viscosas (tangenciais)

11 Casos Especiais Escoamento permanente: 0

12 Casos Especiais Volume de controle não deformável: Entrada Saída Volume de controle não deformável Taxa de quantidade de movimento que sai Taxa de quantidade de movimento que entra

13 Casos Especiais Volume de controle não deformável; Escoamento permanente.

14 Exemplo Calcule a força exercida no cotovelo redutor devido ao escoamento, para um escoamento permanente 1 2 θ V1V1 V2V2

15 Conservação da Energia A energia se conserva entre dois pontos. Nada se perde, nada se cria, tudo se transforma (Lavoisier, século XVIII)

16 Conservação da Energia Partindo do Teorema do Transporte de Reynolds: Para deduzir a formulação para o volume de controle da conservação da quantidade de movimento, fazemos:

17 Conservação da Energia Que substituídos na equação genérica do TTR fornece: O que significa o termo e?

18 Conservação da Energia A energia total do sistema é dada por: Sendo que: e outras = química, eletrostática, nuclear, magnética. Nós desprezamos estas energias. e = energia específica = E/m

19 Conservação da Energia A energia interna (E u ) está associada com: Atividade molecular (energia armazenada); Forças entre moléculas; Difícil de ser estimada; Pequena em relação a outras. Energia cinética está associada à velocidade local: E c = 1/2mV 2 Energia Potencial está associada à cota do ponto: E p = mgz

20 Conservação da Energia Se energia total do sistema é dada por: então:

21 Conservação da Energia Conservação da Energia em um volume de controle Variação da Energia com o tempo no V.C. Fluxos de entrada e saída de Energia através da S.C. Variação da Energia no Sistema O que significa esse termo?

22 Conservação da Energia Os estados inicial e final de energia de um sistema dependem do calor adicionado ou retirado e do trabalho realizado sobre ou pelo o sistema (1ª Lei da Termodinâmica): dQ = Calor agregado ou retirado ao sistema dW = Trabalho realizado dE = Variação da Energia

23 Conservação da Energia A equação pode ser escrita em termos de taxas de energia, calor e trabalho: Sistema

24 Conservação da Energia Examinando cada termo: Condução, convecção e radiação (considerado como um termo único) Realizado por um eixo, pressão e tensões Viscosas (o trabalho das forças gravitacionais é incluído na energia potencial)

25 Conservação da Energia Trabalho realizado: Trabalho transmitido ao V.C. por uma máquina ex.: bomba, turbina, pistão Trabalho devido às forças de pressão Trabalho devido às forças viscosas

26 Conservação da Energia Turbinas:

27 Conservação da Energia Bombas:

28 Conservação da Energia Conservação da Energia em um volume de controle Variação da Energia com o tempo no V.C. Fluxos de entrada e saída de Energia através da S.C. Variação da Energia no Sistema

29 Casos Especiais Escoamento permanente: 0

30 Casos Especiais Volume de controle não deformável: Entrada Saída Volume de controle não deformável Taxa de Energia que sai Taxa de Energia que entra

31 Exemplo Passa através da turbina circular 0,22 m 3 /s de água e as pressões em A e B são iguais a 1,5 kgf/cm 2 e -0,35 kgf/cm 2. Determinar a potência em CV transferida pela corrente de água para a turbina. Considere regime permanente e despreze o atrito da água com as paredes e com a turbina. A B 1 m Turbina d A = 30 cm d B = 60 cm


Carregar ppt "Mecânica dos Fluidos Conservação da Energia Prof. Carlos Ruberto Fragoso Jr."

Apresentações semelhantes


Anúncios Google