A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Análise de Decisão Software SuperDecisions AHP Profa. Dra. Carmen Belderrain Dra. Amanda Cecília Simões da Silva 03 de Agosto 2013.

Apresentações semelhantes


Apresentação em tema: "Análise de Decisão Software SuperDecisions AHP Profa. Dra. Carmen Belderrain Dra. Amanda Cecília Simões da Silva 03 de Agosto 2013."— Transcrição da apresentação:

1 Análise de Decisão Software SuperDecisions AHP Profa. Dra. Carmen Belderrain Dra. Amanda Cecília Simões da Silva 03 de Agosto 2013

2 ANALYTIC HIERARCHY PROCESS AHP Uma hierarquia é uma estrutura linear top down, sem feedback dos níveis inferiores para os níveis superiores. Apresenta, em seu topo, o objetivo global que influencia os critérios. As alternativas recebem influência do nível imediatamente superior e cada alternativa depende apenas de si mesma. Todos os elementos que compõem cada nível hierárquico são considerados independentes entre si. Saaty (2005) 2

3 ANALYTIC HIERARCHY PROCESS AHP 3

4 Existem duas formas de realizar as comparações par a par utilizadas no método AHP, são elas: a)comparações em termos de medição relativa (do inglês relative measurement). Na medição relativa às alternativas são comparadas par a par de acordo com um atributo comum. a)comparações em termos de medição absoluta (do inglês absolute measurement); Na medição absoluta (também conhecida como Ratings) as alternativas são avaliadas de acordo com os níveis de intensidade obtidos de cada atributo (critérios e subcritérios no AHP). ANALYTIC HIERARCHY PROCESS AHP 4

5 5 Etapas AHP 1.Formulação do problema: estruturação do problema e construção da hierarquia 2.Julgamentos: construção das matrizes de decisão 3.Desenvolvimento algébrico: síntese do resultado

6 É um software usado para tomada de decisão com dependência e feedback. Implementa o AHP e o ANP. Ambos usam o mesmo processo de priorização, baseado na comparação par a par de elementos. No AHP os elementos de decisão são dispostos numa estrutura hierárquica de decisão, enquanto que o ANP os elementos de decisão são estruturado em forma de rede. AHP é um caso especial do ANP. Software SuperDecisions 6

7 1)Cluster: dispositivo para ajudá-lo na estruturação do problema de decisão. Ou seja é um agrupamento lógico de fatores ou elementos na decisão considerada. 2)Nós:fatores ou elementos do cluster. 3)Supermatriz sem pesos: é composta pelos autovetores obtidos por meio das comparações par a par dos elementos. 4)Supermatriz ponderada: considera a importância de cada cluster (pesos dos clusters). Numa hierarquia a supermatriz ponderado é a mesma que a supermatriz sem pesos. 5)Supermatriz limite: supermatriz que apresenta as prioridades finais dos elementos do modelo. Conceitos importantes do SuperDecisions 7

8 1. Tela Inicial Para abrir o software SuperDecisions dar um duplo click no ícone. 8

9 Problema Comprar um carro ConfortoMPGPreçoPrestígio Acura TL Toyota Camry Honda Civic 9

10 10 Alternativas (carros) Acura TL -Preço $ $ Milhas por galão 20/29 (cidade/rodovia) -Conforto é excelente Toyota Camry -Preço $ $ Milhas por galão 22/30 (cidade/rodovia) -Conforto é bom Honda Civic -Preço $ $ Milhas por galão 29/38 (cidade/rodovia) -Conforto é de médio para baixo

11 11 2. Criar um cluster* 1)No menu principal selecione Design>Cluster>New para criar um cluster. 2) Entre com onome e descrição do cluster. 3) Salvar. * Procedimento análogo para criar outros clusters.

12 3. Criar um nó dentro do cluster* 1)Clique com o botão direito do mouse dentro da janela do cluster para mostrar a caixa (ou use o menu principal Design>Node> New). 2) Selecione a opçãoCreate node in cluster. 4) Salvar. 3) Entre com o nome e descrição do nó. * Procedimento análogo para criar outros nós. Cluster Nó

13 4. Dicas dos ícones 2) Clique em cima de um cluster e arraste para movê-lo. 1) Ícone para verificar conexão. 4) Clique neste botão e arraste para redimensionar o tamanho do cluster. 5) O cluster com as alternativas tem que ser escrito em inglês Alternatives. 13 3) Ícone para exibir as descrições sobre o cluster ou nó.

14 4. Dicas dos ícones 5) Clique duas vezes em qualquer lugar em um cluster para minimizar/maximizar o cluster. 14

15 4. Dicas dos ícones 6) Clique com o botão direito do mouse dentro da janela do cluster para mostrar a caixa. * A organização é por ordem alfabética ou numérica. 7) Clique em Organize Nodes para organizar* os nós dentro do cluster. 15

16 5. Conexão entre os nós dos clusters* 1)Selecione o nó origem e clique com o botão direito do mouse para mostrar a caixa. Ou use o menu principal Design> Node connexions from. 2) Selecione a opção "Node connections from. 3) Selecione sucessivamente os nós destino. 4) Okay. * Procedimento análogo para completar todas as outras conexões entre os nós. 16

17 5. Conexão entre os nós dos clusters 5) Este ícone mostra os nós que estão conectados. 6)Link automático representando conectividade entre os nós dos clusters. 17

18 18 6. Coleta de Julgamentos 1)No menu principal clique em Assess/Compare>Pairwise Comparison para mostrar a caixa de comparações par a par. Ou utilize o ícone.

19 6. Coleta de Julgamentos 2) Escolha o nó origem. 19

20 6. Coleta de Julgamentos 3) Clique no link para escolher o tipo de comparação. Interpretada como importância entre critérios e preferência entre alternativas com respeito aos critérios. 20

21 6. Coleta de Julgamentos 4) Maneiras possíveis de realizar comparações par a par. GráficoVerbal Matrixial Questionário Direct (entrada direta de dados) 21

22 6. Coleta de Julgamentos 5) Entre com a comparação par a par dos carros com respeito ao critério Prestígio* - Matrixial. * Procedimento análogo com os outros critérios. Azul – elemento da esquerda é dominante. Vermelho – elemento superior é dominante. 1Acura TL 2Toyota 3Honda 1Acura TL 2Toyota 3Honda 22

23 23 6. Coleta de Julgamentos Azul – elemento da esquerda é dominante. Vermelho – elemento da direita é dominante. 5.1) Ou entre com a comparação par a par dos carros com respeito ao critério Prestígio* - Questionário.

24 6. Coleta de Julgamentos 5.2) Ou entre os valores dos carros com respeito ao preço - Direct. Os valores são normalizados para dar as prioridades. Inconsistência é sempre zero. Inverter prioridades. 24

25 6. Coleta de Julgamentos 6. Toda vez que terminar um conjunto de comparações, deve-se marcá-lo completar" antes de prosseguir para a próxima comparação. 25

26 7. Verificação da consistência dos julgamentos 1)Clique em Inconsistency* e selecione "Inconsistency Report para verificar a consistência. * Somente na Forma Matrixial. 2) Melhorar a inconsistência. O software SuperDecisions mostra o valor da Razão de Consistência (RC). 26

27 8. Resultados – Supermatriz sem pesos 1)No menu principal selecione Computations>Unweighted Super Matrice>Graphical para obter a supermatriz sem pesos. Supermatriz sem Pesos: apresenta as prioridades obtidas através das comparações par a par. 27

28 28 8. Resultados – Supermatriz sem pesos Prioridades das alternativas (carros) com respeito ao critério Prestígio.

29 8. Resultados – Supermatriz ponderada 2) No menu principal selecione Computations>Unweighted Super Matrice>Graphical para obter a supermatriz ponderada. 29 Supermatriz Ponderada.

30 8 Resultados – Supermatriz Limite 3) No menu principal selecione Computations>Limite Matrice>Graphical para obter a supermatriz limite. 30 Supermatriz Limite.

31 8. Resultados – prioridades finais 4) Selecione Computations>Synthesize para obter as prioridades finais (na forma gráfica) para as alternativas. Os valores da coluna Raw são provenientes da Supermatriz Limite. Os valores da coluna Normals" são obtidos a partir dos valores do Raw, normalizados. Os valores da coluna Ideals' são obtidos a partir dos valores do Raw idealizados. Honda Civic > Acura TL > Toyota Camry 31

32 8. Resultado obtido atráves da Supermatriz Limite 32

33 9. Sannity Check 33 1) Selecione Computations>Sannity Check para revelar comparações incompletos e objetivos duplicados, entre outras coisas.

34 34 Por exemplo: alterando o nome do cluster Alternatives para Alternativas. Warning! No Alternatives Found...this could have happened because the alternatives cluster was not named älternatives. 9. Sannity Check

35 10. Relatório 35 1) Selecione Computations>Full Report ou File>Print para gerar o arquivo HTML de relatório sobre o modelo.

36 10. Relatório 36 2) O Relatório apresenta os nomes e descrições dos nós e clusters e prioridades importantes.

37 11. Salvar o modelo 37 1) Selecione File>Save as para salvar o modelo. Extensão do arquivo:.sdmod

38 12. Modelo Hierárquico com Subcritério 38

39 Bibliografia Saaty, T. L.(2005), Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs and Risks, – RWS Publications, Pittsburg. SAATY, R. W. Decision making in complexenvironments.: the analytic hierarchy process for decision making and the analytic network process for decision making with dependence and feedback (Superdecisions Tutorial). Daytona Beach, Florida: Embry Riddle Aeronautical University, 2003, 122 p. Disponível em:// Apresentação Tutorial 1: AHP Relative Model e Apresentação Titorial 5: AHP and ANP 39


Carregar ppt "Análise de Decisão Software SuperDecisions AHP Profa. Dra. Carmen Belderrain Dra. Amanda Cecília Simões da Silva 03 de Agosto 2013."

Apresentações semelhantes


Anúncios Google