A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

2008 SEMINÁRIOS EM CIÊNCIAS ATUARIAIS E ESTATÍSTICA.

Apresentações semelhantes


Apresentação em tema: "2008 SEMINÁRIOS EM CIÊNCIAS ATUARIAIS E ESTATÍSTICA."— Transcrição da apresentação:

1 2008 SEMINÁRIOS EM CIÊNCIAS ATUARIAIS E ESTATÍSTICA

2 Seminários em Ciências Atuariais e Estatística – MAD236 Horário: sextas de 8-10h Horário: sextas de 8-10h Sala: LIG- sala 02 Sala: LIG- sala 02 Professores responsáveis: Natalie H. Hurtado e Flávia Landim Professores responsáveis: Natalie H. Hurtado e Flávia Landim

3 Cronograma Datas dos seminários: Março 07,14 e 28 Abril 04, 11, 18 e 25 Maio 9, 16 e 30 Junho 06, 13, 20 e 27 São ao todo 14 seminários.

4 Informações importantes A presença é obrigatória! O(a) aluno(a) poderá ter no máximo duas faltas. A presença é obrigatória! O(a) aluno(a) poderá ter no máximo duas faltas. A avaliação será com base em dois relatórios de temas a serem escolhidos entre os seminários apresentados. A avaliação será com base em dois relatórios de temas a serem escolhidos entre os seminários apresentados. Relatório 1 Escolha entre o seminário de 28 de março e 9 de maio, para ser entregue no dia 16 de maio. Relatório 1 Escolha entre o seminário de 28 de março e 9 de maio, para ser entregue no dia 16 de maio. Relatório 2 Escolha entre o seminário de 16 de maio e 27 de junho, para ser entregue no dia 2 de julho. Relatório 2 Escolha entre o seminário de 16 de maio e 27 de junho, para ser entregue no dia 2 de julho. Na avaliação também será levado em conta a participação nos seminários. Na avaliação também será levado em conta a participação nos seminários.

5 Página de informações da disciplina ml ml ml ml

6 Cronologia de Alguns Conceitos e Fatos Importantes da Estatística (Gauss M. Cordeiro, 2006) Antes de Cristo: Registros egípcios de presos de guerra Registros egípcios de presos de guerra Jogos de dados (Objetos de ossos) Jogos de dados (Objetos de ossos) Censo Chinês Censo Chinês Registros de dados em livros da Dinastia Chinesa Registros de dados em livros da Dinastia Chinesa Thales de Mileto usa a geometria dedutiva Thales de Mileto usa a geometria dedutiva Pitágoras (Aritmética e Geometria) Pitágoras (Aritmética e Geometria) Philolaus obtém dados de Astronomia e Hippocrates estuda doenças a partir da coleta de dados Philolaus obtém dados de Astronomia e Hippocrates estuda doenças a partir da coleta de dados Estabelecido o Censo Romano - Descrição detalhada de coleta de dados em livros de Constantinopla Estabelecido o Censo Romano - Descrição detalhada de coleta de dados em livros de Constantinopla Horácio usa um ábaco de fichas como instrumento de cálculo portátil Horácio usa um ábaco de fichas como instrumento de cálculo portátil

7 Depois de Cristo: Menelaus apresenta tabelas estatísticas cruzadas Menelaus apresenta tabelas estatísticas cruzadas Surge em Constantinopla um Primeiro Bureau de Estatística Surge em Constantinopla um Primeiro Bureau de Estatística Utilização da média ponderada pelos árabes na contagem de moedas Utilização da média ponderada pelos árabes na contagem de moedas Os árabes usam cálculos estatísticos na tomada de Creta Os árabes usam cálculos estatísticos na tomada de Creta O astrônomo persa Yahyâ Abî Mansûr apresenta tabelas de dados de astronomia O astrônomo persa Yahyâ Abî Mansûr apresenta tabelas de dados de astronomia Origem dos números combinatórios (Shihchieh Chu) Origem dos números combinatórios (Shihchieh Chu) O persa Ghiyat Kâshî realiza os primeiros cálculos de probabilidade com a fórmula do binômio O persa Ghiyat Kâshî realiza os primeiros cálculos de probabilidade com a fórmula do binômio Surgem as primeiras tabelas de mortalidade construídas pelos sábios do Islã Surgem as primeiras tabelas de mortalidade construídas pelos sábios do Islã Lotto de Firenze – Primeira Loteria Pública Lotto de Firenze – Primeira Loteria Pública Número Combinatório (Cardano) Número Combinatório (Cardano)

8 continuação Pierre de Fermat e Blaise Pascal estabelecem os Princípios do Cálculo das Probabilidades Pierre de Fermat e Blaise Pascal estabelecem os Princípios do Cálculo das Probabilidades Huygens publica o primeiro tratado de Probabilidade Huygens publica o primeiro tratado de Probabilidade Fundação da Royal Society of London Fundação da Royal Society of London Primeiros estudos demográficos (Graunt) Primeiros estudos demográficos (Graunt) Distribuição de Pascal, Tratado do Triângulo Aritmético e conceito de Valor Esperado (Pascal) Distribuição de Pascal, Tratado do Triângulo Aritmético e conceito de Valor Esperado (Pascal) Edmund Halley publica tabelas de mortalidade e cria os fundamentos da Atuária Edmund Halley publica tabelas de mortalidade e cria os fundamentos da Atuária Distribuição Binomial (Bernoulli) Distribuição Binomial (Bernoulli) 1718 – De Moivre publica Doutrina das Chances 1718 – De Moivre publica Doutrina das Chances Distribuição Normal (De Moivre) e Fórmula de Stirling para n! Distribuição Normal (De Moivre) e Fórmula de Stirling para n! Teorema Central do Limite (De Moivre) Teorema Central do Limite (De Moivre) Inferência Estatística (Reverendo Thomas Bayes) Inferência Estatística (Reverendo Thomas Bayes) Probabilidade Condicional e Teorema de Bayes Probabilidade Condicional e Teorema de Bayes William Morgan se torna o primeiro atuário William Morgan se torna o primeiro atuário

9 Primeiro exemplo de uso da verossimilhança na estimação de parâmetro (Daniel Bernoulli) Primeiro exemplo de uso da verossimilhança na estimação de parâmetro (Daniel Bernoulli) A França estabelece o seu Bureau de Estatística A França estabelece o seu Bureau de Estatística Método dos Mínimos Quadrados (Legendre) Método dos Mínimos Quadrados (Legendre) Teorema Central do Limite (Laplace) Teorema Central do Limite (Laplace) Théorie Analytique des Probabilités – sendo a base da Inferência (Laplace) Théorie Analytique des Probabilités – sendo a base da Inferência (Laplace) Várias sociedades de Estatística são criadas Várias sociedades de Estatística são criadas Primeiro Computador Analítico (Charles Babbage) e Fundação do Journal of the Royal Statistical Society - B Primeiro Computador Analítico (Charles Babbage) e Fundação do Journal of the Royal Statistical Society - B Lei dos Grandes Números (Poisson) Lei dos Grandes Números (Poisson) Distribuição Gama Distribuição Gama Distribuição de Poisson Distribuição de Poisson Fundação da American Statistical Association (ASA) Fundação da American Statistical Association (ASA)

10 Uso de Quantis (Quetelet) Uso de Quantis (Quetelet) Distribuição de Cauchy e Primeira Conferência Internacional de Estatística em Bruxellas (Quetelet) Distribuição de Cauchy e Primeira Conferência Internacional de Estatística em Bruxellas (Quetelet) Desigualdade de Chebyshev Desigualdade de Chebyshev Primeiro uso de um Método do tipo Monte Carlo (Forest) Primeiro uso de um Método do tipo Monte Carlo (Forest) 1885 – Fundação do ISI (International Statistical Institute) 1885 – Fundação do ISI (International Statistical Institute) Teoria de Regressão (Galton) e Índice de Marshall Teoria de Regressão (Galton) e Índice de Marshall Coeficiente de Correlação (Edgeworth) Coeficiente de Correlação (Edgeworth) Método dos Momentos e Uso pela primeira vez dos termos momento e desvio padrão (Karl Pearson) Método dos Momentos e Uso pela primeira vez dos termos momento e desvio padrão (Karl Pearson) Sistema de Distribuições e Coeficiente de Variação (Karl Pearson) Sistema de Distribuições e Coeficiente de Variação (Karl Pearson) Métodos de Captura e Recaptura (Petersen) Métodos de Captura e Recaptura (Petersen) Coeficiente de Correlação de Produto de Momentos (Pearson e Sheppard) e Distribuição de Pareto Coeficiente de Correlação de Produto de Momentos (Pearson e Sheppard) e Distribuição de Pareto Teste Qui-quadrado (Karl Pearson), Cadeias de Markov e Coeficiente de Associação (Yule) Teste Qui-quadrado (Karl Pearson), Cadeias de Markov e Coeficiente de Associação (Yule)

11 Fundação da Biometrika (Pearson, Weldon e Galton) Fundação da Biometrika (Pearson, Weldon e Galton) Análise Fatorial (Spearman), Coeficiente de Contingência (K. Pearson), Coeficiente de Spearman e Expansão de Edgeworth Análise Fatorial (Spearman), Coeficiente de Contingência (K. Pearson), Coeficiente de Spearman e Expansão de Edgeworth Distribuição nula do coeficiente de correlação e distribuição t de Student (William Gosset) e Análise Fatorial (Spearman) Distribuição nula do coeficiente de correlação e distribuição t de Student (William Gosset) e Análise Fatorial (Spearman) Método de Máxima Verossimilhança (Sir Ronald Fisher) e Índice de Gini Método de Máxima Verossimilhança (Sir Ronald Fisher) e Índice de Gini Definição de Verossimilhança, Consistência e Suficiência (Fisher) e Prova Rigorosa do Teorema Central do Limite (Lindeberg) Definição de Verossimilhança, Consistência e Suficiência (Fisher) e Prova Rigorosa do Teorema Central do Limite (Lindeberg) Tabela ANOVA (Fisher) e Processo de Wiener Tabela ANOVA (Fisher) e Processo de Wiener Livro Clássico Statistical Methods for Research Workers, Método escore para parâmetros e definição de p-valor (Fisher) Livro Clássico Statistical Methods for Research Workers, Método escore para parâmetros e definição de p-valor (Fisher) Planejamento de Experimentos (Fisher) e Conceito de Hipótese Altermativa (Gosset) Planejamento de Experimentos (Fisher) e Conceito de Hipótese Altermativa (Gosset) Distribuições Não- Centrais (Fisher), Intervalos de Confiança, Razão de Verossimilhanças e Poder dos Testes (Neyman e Pearson) e Distribuição de Wishart Distribuições Não- Centrais (Fisher), Intervalos de Confiança, Razão de Verossimilhanças e Poder dos Testes (Neyman e Pearson) e Distribuição de Wishart Controle de Qualidade nas indústrias, Inferência Fiducial (Fisher) e Distância de Mahalanobis, Tempo Médio de Espera na Fila M/G/1 (Pollaczek) e Fundação da Econometrica Controle de Qualidade nas indústrias, Inferência Fiducial (Fisher) e Distância de Mahalanobis, Tempo Médio de Espera na Fila M/G/1 (Pollaczek) e Fundação da Econometrica Noção de Espaco Amostral (von Mises), Cartas de Controle de Qualidade (Shewhart) e Teste de Fisher-Yates Noção de Espaco Amostral (von Mises), Cartas de Controle de Qualidade (Shewhart) e Teste de Fisher-Yates

12 Distribuição de Gumbel Distribuição de Gumbel Lema de Neyman & Pearson, Distância de Kolmogorov, Componentes Principais (Hotteling), Fundamentos de Probabilidade (Kolmogorov) e Permutabilidade (DeFinetti) Lema de Neyman & Pearson, Distância de Kolmogorov, Componentes Principais (Hotteling), Fundamentos de Probabilidade (Kolmogorov) e Permutabilidade (DeFinetti) Estatística Ancilar, Família Exponencial e Princípios da Verossimilhança (Fisher), Distribuição F (Snedecor), Análise de Confluência (Frisch) e Teorema de Cochran Estatística Ancilar, Família Exponencial e Princípios da Verossimilhança (Fisher), Distribuição F (Snedecor), Análise de Confluência (Frisch) e Teorema de Cochran Distribuição Assintótica da Razão de Verossimilhanças (Wilks) Distribuição Assintótica da Razão de Verossimilhanças (Wilks) Distribuição de Weibull e início dos Métodos Bayesianos (Jeffreys) Distribuição de Weibull e início dos Métodos Bayesianos (Jeffreys) Enfoque Bayesiano em Modelos de Espaço de Estados (Harrison e Stevens) Enfoque Bayesiano em Modelos de Espaço de Estados (Harrison e Stevens) Algoritmo EM (Dempster, Laird e Rubin), Análise Exploratória de Dados (Tukey), Distribuições g e h (Tukey) e Performance dos estimadores de MV em pequenas amostras (Bowman e Shenton) Algoritmo EM (Dempster, Laird e Rubin), Análise Exploratória de Dados (Tukey), Distribuições g e h (Tukey) e Performance dos estimadores de MV em pequenas amostras (Bowman e Shenton) Métodos MCMC no contexto Bayesiano (Gelfand e Smith) e Mineração de Dados (Data Mining), Momentos L (Hosking) e Teoria da Perturbação Estocástica (Stewart) Métodos MCMC no contexto Bayesiano (Gelfand e Smith) e Mineração de Dados (Data Mining), Momentos L (Hosking) e Teoria da Perturbação Estocástica (Stewart)

13 Estatística: o que é? O primeiro uso da palavra ESTATÍSTICA parece datar de 1589 (dc) e apareceu em um trabalho do historiador Girolomo Ghilini, quando se referiu a uma ciência civil, política, estatística e militar. (Berquó, 1981) O primeiro uso da palavra ESTATÍSTICA parece datar de 1589 (dc) e apareceu em um trabalho do historiador Girolomo Ghilini, quando se referiu a uma ciência civil, política, estatística e militar. (Berquó, 1981) As expressões statistics, statist e statistical parecem ter sido derivadas do latim status com duplo significado: As expressões statistics, statist e statistical parecem ter sido derivadas do latim status com duplo significado: estado político; e situação das coisas. estado político; e situação das coisas.

14 DEFINIÇÃO No Aurélio (primeira edição) apresentam-se as seguintes definições: No Aurélio (primeira edição) apresentam-se as seguintes definições: (1) Parte da matemática em que se investigam os processos de obtenção, organização e análise de dados sobre uma população ou uma coleção de seres quaisquer, e os métodos de tirar conclusões e fazer ilações ou predições com base nesses dados; (2) Qualquer parâmetro de uma amostra, como, por exemplo, a sua média, o seu desvio-padrão, a sua variância.

15 Estatística: o que é ? Para Sir Ronald A. Fisher ( ): Estatística é o estudo das populações, das variações e dos métodos de redução de dados.

16 Estatística: o que é? Eu gosto de pensar na Estatística como a ciência de aprendizagem a partir dos dados... Eu gosto de pensar na Estatística como a ciência de aprendizagem a partir dos dados... Jon Kettenring Presidente da American Statistical Association, 1997

17 Estatística: o que é? Uma boa definição é Estatística é um conjunto de técnicas e métodos que nos auxiliam no processo de tomada de decisão na presença de incerteza. Uma boa definição é Estatística é um conjunto de técnicas e métodos que nos auxiliam no processo de tomada de decisão na presença de incerteza.

18 Estatística: o que é? Toda atividade humana é baseada em previsões e tomadas de decisão sob incerteza: Toda atividade humana é baseada em previsões e tomadas de decisão sob incerteza: quando entramos para a universidade, quando arrumamos um emprego, quando nos casamos, quando investimos uma quantia no mercado de ações, etc. quando entramos para a universidade, quando arrumamos um emprego, quando nos casamos, quando investimos uma quantia no mercado de ações, etc.

19 Estatística: o que é? Calyampudi R. Rao (1920- ), um estatístico indiano famoso apresenta a seguinte equação: Calyampudi R. Rao (1920- ), um estatístico indiano famoso apresenta a seguinte equação: conhecimento incerto + conhecimento da quantidade de incerteza = conhecimento útil Essa parte da equação Representa o papel fundamental do estatístico

20 Quantificação da Incerteza Não há uma forma definida de quantificar incertezas e o assunto é bastante controverso. A primeira tentativa séria foi feita pelo Reverendo Thomas Bayes (?-1761) que foi dito ter 59 anos quando morreu em 17/04/1761 – não se sabe quando ele nasceu. Não há uma forma definida de quantificar incertezas e o assunto é bastante controverso. A primeira tentativa séria foi feita pelo Reverendo Thomas Bayes (?-1761) que foi dito ter 59 anos quando morreu em 17/04/1761 – não se sabe quando ele nasceu. Bayes introduziu o conceito de uma distribuição a priori sobre o conjunto das hipóteses possíveis, indicando os graus de crença para as diferentes hipóteses, antes dos dados serem observados, que nós denotaremos por p(h). Bayes introduziu o conceito de uma distribuição a priori sobre o conjunto das hipóteses possíveis, indicando os graus de crença para as diferentes hipóteses, antes dos dados serem observados, que nós denotaremos por p(h). Essa distribuição a priori junto com o conhecimento da distribuição de probabilidade dos dados d dada a hipótese h, denotada por p(d|h), capacita-nos obter a distribuição de probabilidade total (marginal) dos dados observados, denotada por p(d). Essa distribuição a priori junto com o conhecimento da distribuição de probabilidade dos dados d dada a hipótese h, denotada por p(d|h), capacita-nos obter a distribuição de probabilidade total (marginal) dos dados observados, denotada por p(d).

21 Agora estamos em posição de calcular a distribuição condicional da hipótese dados os dados observados: Agora estamos em posição de calcular a distribuição condicional da hipótese dados os dados observados: que é chamada distribuição a posteriori ou distribuição de incertezas sobre as hipóteses à luz dos dados observados. que é chamada distribuição a posteriori ou distribuição de incertezas sobre as hipóteses à luz dos dados observados. A partir de um conhecimento a priori das hipóteses alternativas e dos dados observados, obtemos um conhecimento novo sobre as hipóteses possíveis e a solução de Bayes é, de fato, logicamente sólida. A partir de um conhecimento a priori das hipóteses alternativas e dos dados observados, obtemos um conhecimento novo sobre as hipóteses possíveis e a solução de Bayes é, de fato, logicamente sólida.

22 Alguns estatísticos, porém, sentem-se desconfortáveis sobre a introdução de uma distribuição a priori em um problema, a menos que a escolha de tal distribuição seja feita de maneira objetiva – por exemplo, baseada na evidência observacional do passado e não na crença de um indivíduo. Esforços foram empreendidos pelos fundadores da estatística moderna K. Pearson, R.A. Fisher, J. Neyman, A. Wald, para desenvolver teorias de inferência sem usar distribuições a priori. Esses métodos, porém, apresentam muitas vezes dificuldades lógicas. (Rao, 1996)

23 Do determinismo ao estocástico Por muito tempo acreditou-se que todo evento natural tinha uma característica pré- determinada. Formulação mais extrema disso idéia de Laplace Formulação mais extrema disso idéia de Laplace existência de um demônio matemático, um espírito dotado de uma capacidade ilimitada de dedução matemática, que seria capaz de prever todos os eventos futuros no mundo, se em um dado momento ele conhecesse todas as magnitudes que caracterizam o estado presente.

24 A idéia de Laplace mostrou-se incorreta de duas formas. existem dificuldades tanto lógicas, quanto práticas na formulação de leis determinísticas para fenômenos naturais; existem dificuldades tanto lógicas, quanto práticas na formulação de leis determinísticas para fenômenos naturais; é impossível medir o estado verdadeiro de um sistema em qualquer tempo dado. é impossível medir o estado verdadeiro de um sistema em qualquer tempo dado. Na teoria do Caos tal fenômeno é chamado – Efeito Borboleta. Na teoria do Caos tal fenômeno é chamado – Efeito Borboleta.

25 CHANCE: inerente na natureza Três grandes desenvolvimentos se deram aproximadamente na mesma época em meados do século XIX em três campos distintos de averiguação. 1) O estatístico social belga Adolphe Quetelet ( ) usou os conceitos de probabilidade ao descrever um fenômeno social e biológico.

26 2) O botânico austríaco Gregor Mendel ( ) formulou suas leis de hereditariedade, através de simples mecanismos de chance, como lançar dados. CHANCE: inerente na natureza

27 3) O físico austríaco Ludwig Boltzmann ( ) deu uma interpretação estatística para uma das proposições mais fundamentais de física teórica, a segunda lei da termodinâmica. As leis básicas da física foram elas próprias expressas em termos probabilísticos, particularmente no nível microscópico das partículas fundamentais. CHANCE: inerente na natureza

28 o comportamento aleatório é considerado como uma parte indispensável e inerente do funcionamento normal de muitos tipos de coisas. modelos estocásticos foram construídos para explicar o comportamento de sistemas dados. Exemplos de tais descrições são: o movimento Browniano, cintilações causadas por radioatividade, o princípio da incerteza de Heisenberg, as distribuições de velocidade de Maxwell de moléculas de massas iguais. Todas eles indicando o caminho para a mecânica quântica.

29 Nós vimos como a Física Clássica lutou em vão para resignar-se ao crescimento de observações quantitativas com idéias preconcebidas sobre causalidade, derivadas da experiência de todo dia, mas elevou-se a um nível de postulados metafísicos, e como ela lutou uma batalha perdida contra a intrusão da chance. Hoje a ordem foi revertida: chance tornou-se uma noção primária, mecânica uma expressão de suas leis quantitativas, e a evidência esmagadora de casualidade com todos os seus atributos no domínio da experiência ordinária é satisfatoriamente explicada pela lei estatística dos grandes números. (Max Born )

30 POSSIBILIDADE DE FALHA NO CONHECIMENTO CIENTÍFICO POSSIBILIDADE DE FALHA NO CONHECIMENTO CIENTÍFICO Todo conhecimento científico, sendo baseado em evidência que é formalmente incompleta, é somente provável e nunca absolutamente certo. Todo conhecimento científico, sendo baseado em evidência que é formalmente incompleta, é somente provável e nunca absolutamente certo. Todas as predições baseadas em conhecimento científico. Devem, portanto, poder falhar e, de fato, mostrarem-se erradas a longo prazo. Todas as predições baseadas em conhecimento científico. Devem, portanto, poder falhar e, de fato, mostrarem-se erradas a longo prazo. A longa história da filosofia e da ciência é em grande parte a história da emancipação progressiva da mente humana da teoria das verdades auto- evidentes e dos postulados de certeza total com a marca da verdade científica. A longa história da filosofia e da ciência é em grande parte a história da emancipação progressiva da mente humana da teoria das verdades auto- evidentes e dos postulados de certeza total com a marca da verdade científica.

31 Em todo o campo da ciência os processos matemáticos dedutivos de inferência absolutamente certa estão sendo substituídos pelos métodos estatísticos de inferência incerta. Em todo o campo da ciência os processos matemáticos dedutivos de inferência absolutamente certa estão sendo substituídos pelos métodos estatísticos de inferência incerta.

32 Exemplos de situações em que se usa Estatística Mensuração das mudanças no meio-ambiente para avaliar os efeitos do aquecimento global; Mensuração das mudanças no meio-ambiente para avaliar os efeitos do aquecimento global; Mensuração da poluição do ar para avaliar os efeitos na saúde da população; Mensuração da poluição do ar para avaliar os efeitos na saúde da população; Mensuração das mudanças nos padrões populacionais para avaliar que tipos de moradia são necessários e em que localizações; Mensuração das mudanças nos padrões populacionais para avaliar que tipos de moradia são necessários e em que localizações; Análise de experimentos sobre o uso de fertilizantes para maximizar a produção de milho; Análise de experimentos sobre o uso de fertilizantes para maximizar a produção de milho; Mensuração da eficácia de diferentes medicamentos para encontrar o melhor, e identificar efeitos colaterais; Mensuração da eficácia de diferentes medicamentos para encontrar o melhor, e identificar efeitos colaterais; Cálculo de quão provável duas pessoas têm o mesmo perfil de DNA. Cálculo de quão provável duas pessoas têm o mesmo perfil de DNA.

33 Legislação brasileira: dois medicamentos são bioequivalentes se o intervalo de confiança de 90% para x estiver entre 80 e 125%. Exemplo: Medicamentos genéricos Problema: verificar a eficácia do remédio que está sendo criado, comparando-o com o que já existe no mercado.

34 Etapas para o teste de bioequivalência: 1. Clínica: os medicamentos são analisados segundo sua monografia inscrita na Farmacopéia Brasileira. A diferença de teor do fármaco deve ser inferior a 5%. 1. Clínica: os medicamentos são analisados segundo sua monografia inscrita na Farmacopéia Brasileira. A diferença de teor do fármaco deve ser inferior a 5%. No mínimo 24 voluntários recebem os medicamentos em períodos alternados. O n.º de períodos é escolhido de modo a assegurar a validade estatística. No mínimo 24 voluntários recebem os medicamentos em períodos alternados. O n.º de períodos é escolhido de modo a assegurar a validade estatística.

35 Etapas para o teste de bioequivalência: 3. estatística: analisa-se a variância de CMAX (concentração máxima) e ASC (área sob a curva) para avaliar os efeitos de grupo, de voluntários, de período e de tratamento. 3. estatística: analisa-se a variância de CMAX (concentração máxima) e ASC (área sob a curva) para avaliar os efeitos de grupo, de voluntários, de período e de tratamento.

36 Medidas da Concentração:

37 Análise dos resultados: Concluiu-se que o remédio testado é equivalente ao já existente.

38 Resumindo: A Estatística utiliza métodos matemáticos para solucionar problemas reais de tomada de decisão quando há incerteza. A Estatística utiliza métodos matemáticos para solucionar problemas reais de tomada de decisão quando há incerteza. Em situações nas quais poderíamos contar unicamente com a sorte, temos um instrumento, que nos possibilita aumentar as chances de tomar a melhor decisão. Em situações nas quais poderíamos contar unicamente com a sorte, temos um instrumento, que nos possibilita aumentar as chances de tomar a melhor decisão. Na prática, a Estatística pode ser empregada como ferramenta fundamental em várias outras ciências. Na prática, a Estatística pode ser empregada como ferramenta fundamental em várias outras ciências.

39 Formação de Graduação A base da formação de graduação de um estatístico deve estar fundamentada em cálculo, álgebra linear, teoria das probabilidades e inferência estatística, técnicas e linguagens computacionais, métodos de análise estatística. A base da formação de graduação de um estatístico deve estar fundamentada em cálculo, álgebra linear, teoria das probabilidades e inferência estatística, técnicas e linguagens computacionais, métodos de análise estatística. Por conta da grande variedade de possibilidades de atuação, cerca de 25% do currículo é composto por disciplinas complementares. Por conta da grande variedade de possibilidades de atuação, cerca de 25% do currículo é composto por disciplinas complementares.

40 Formação de Graduação As disciplinas complementares são escolhidas de acordo com o interesse do estudante. As disciplinas complementares são escolhidas de acordo com o interesse do estudante. No momento temos um convênio com o Hospital Universitário Clementino Fraga Filho, que oferece bolsas de Iniciação Científica para alunos do curso. No momento temos um convênio com o Hospital Universitário Clementino Fraga Filho, que oferece bolsas de Iniciação Científica para alunos do curso. As atividades envolvem apoio aos médicos do hospital, que têm muitos dados, mas não sabem como analisá-los. As atividades envolvem apoio aos médicos do hospital, que têm muitos dados, mas não sabem como analisá-los.

41

42 Pós-Graduação O Instituto de Matemática oferece cinco pós- graduações nas áreas: matemática (mestrado e doutorado), matemática aplicada, estatística (mestrado e doutorado), informática e ensino da matemática. O Instituto de Matemática oferece cinco pós- graduações nas áreas: matemática (mestrado e doutorado), matemática aplicada, estatística (mestrado e doutorado), informática e ensino da matemática. Seguindo as recomendações curriculares, em 6 anos pode-se concluir a Graduação e o Mestrado em Estatística. Seguindo as recomendações curriculares, em 6 anos pode-se concluir a Graduação e o Mestrado em Estatística.

43 A Profissão O exercício profissional é fiscalizado pelos Conselhos Regionais de Estatística (CONRE), sob a supervisão do Conselho Federal de Estatística (CONFE-www.confe.com.br), o qual orienta e disciplina o exercício da profissão de Estatística. A profissão Estastístico é regulamentada pelo decretodecreto n , DE 1.o DE ABRIL DE 1968.

44 Sociedades Científicas A comunidade estatística reúne-se em sociedades científicas e profissionais. A Associação Brasileira de Estatística (ABE - promove vários encontros, entre eles, o SINAPE, a cada dois anos. Em vocês encontrarão vários links interessantes, relacionados à Estatística.www.im.ufrj.br/estatistica/linkestat.html

45 Estatísticos formados pela UFRJ - onde estão? Diversos estatísticos formados pela UFRJ são hoje docentes em Instituições Federais e Estaduais de Ensino Superior, tendo concluído pelo menos o mestrado em Estatística (UFRJ, UFF, UERJ, UFPR,...). Dois em particular atuam em universidades americanas. Também há vários estatísticos formados pelo IM-UFRJ que se encontram no serviço público: IBGE, FIOCRUZ (Fundação Oswaldo Cruz), ANAC (Agência Nacional de Aviação Civil), Petrobras, ANS (Agência Nacional de Saúde), IRB (Instituto de Resseguros do Brasil), na CBTU (Companhia Brasileira de trens urbanos).

46 Estatísticos formados pela UFRJ - onde estão? Na iniciativa privada também temos alunos egressos do curso, por exemplo, na Telemar, na Golden Cross, na FIRJAN (Federação das Indústrias do Rio de Janeiro), na Sul América, na Eletros, em companhias de pesquisa de opinião como a LIPE, Interação-Pesquisa, entre outras. Na iniciativa privada também temos alunos egressos do curso, por exemplo, na Telemar, na Golden Cross, na FIRJAN (Federação das Indústrias do Rio de Janeiro), na Sul América, na Eletros, em companhias de pesquisa de opinião como a LIPE, Interação-Pesquisa, entre outras.

47 Visite periodicamente página do curso para obter outras informações importantes. Bacharelado em Estatística no IM-UFRJ

48 Seminário de 14/03/2008: O que é Atuária? Professora Natalie Haawinckel Hurtado - IM/UFRJ

49 Referências Berquó, Souza e Gotlieb. (1981). Bioestatística. EPU. Berquó, Souza e Gotlieb. (1981). Bioestatística. EPU. Rao, C.R. (1996).Uncertainty, Statistics, and Creation of New Knowledge. Chance. pp Rao, C.R. (1996).Uncertainty, Statistics, and Creation of New Knowledge. Chance. pp Cordeiro, G. M. (2006). Cronologia de Alguns Conceitos e Fatos Importantes da Estatística. Cordeiro, G. M. (2006). Cronologia de Alguns Conceitos e Fatos Importantes da Estatística. Cronologia de Alguns Conceitos e Fatos Importantes da Estatística Cronologia de Alguns Conceitos e Fatos Importantes da Estatística


Carregar ppt "2008 SEMINÁRIOS EM CIÊNCIAS ATUARIAIS E ESTATÍSTICA."

Apresentações semelhantes


Anúncios Google