A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

ENG309 – Fenômenos de Transporte III

Apresentações semelhantes


Apresentação em tema: "ENG309 – Fenômenos de Transporte III"— Transcrição da apresentação:

1 ENG309 – Fenômenos de Transporte III
UFBA – Universidade Federal da Bahia ENG309 – Fenômenos de Transporte III Prof. Dr. Marcelo José Pirani Departamento de Engenharia Mecânica

2 CAPÍTULO 1 - INTRODUÇÃO 1.1. Definição “Calor ou transferência de calor é a energia térmica em trânsito devido a uma diferença de temperatura no espaço” 1.2. Mecanismos da Transferência de Calor A transferência de calor pode ocorrer de 3 modos distintos: - Condução; - Convecção ; - Radiação.

3 CAPÍTULO 1 - INTRODUÇÃO Condução Ocorre em sólidos, líquidos e gases em repouso.

4 Ocorre em sólidos, líquidos e gases em repouso.
CAPÍTULO 1 - INTRODUÇÃO Condução Ocorre em sólidos, líquidos e gases em repouso. Figura 1.2: Associação da transferência de calor por condução à difusão de energia devido à atividade molecular

5 CAPÍTULO 1 - INTRODUÇÃO Condução Lei de Fourier onde: q – Taxa de calor [W] k – Condutividade Térmica [W/moC] A – Área [m2] dT/dx – Gradiente de temperatura [oC/m]

6 CAPÍTULO 1 - INTRODUÇÃO Condução Condutividade térmica

7 CAPÍTULO 1 - INTRODUÇÃO Condução Condutividade térmica

8 CAPÍTULO 1 - INTRODUÇÃO Exemplo: A parede da fornalha de uma caldeira é construída de tijolos refratários com 0,20m de espessura e condutividade térmica de 1,3 W/mK. A temperatura da parede interna é de 1127oC e a temperatura da parede externa é de 827oC. Determinar a taxa de calor perdido através de uma parede com 1,8m por 2,0 m. Dados: Solução x = 0,20 m k = 1,3 [W/moC] Ti = 1127 oC Te = 827 oC A = 1,8.2,0 = 3,6 m2

9 CAPÍTULO 1 - INTRODUÇÃO Convecção Quando um fluido a determinada temperatura escoa sobre uma superfície sólida a temperatura diferente, ocorrerá transferência de calor entre o fluido e a superfície sólida, como conseqüência do movimento do fluido em relação a superfície. Abrange dois mecanismos: - Difusão; - Advecção.

10 CAPÍTULO 1 - INTRODUÇÃO Convecção A convecção pode ser natural ou forçada.  Convecção Natural O movimento ocorre devido a diferença de densidade TW > T TW V T ar

11 CAPÍTULO 1 - INTRODUÇÃO Convecção A convecção pode ser natural ou forçada.  Convecção Forçada O movimento ocorre devido a um mecanismo externo TW U T ar TW > T Parede

12 CAPÍTULO 1 - INTRODUÇÃO Convecção Lei de Resfriamento de Newton onde: q – Taxa de calor [W] h – Coeficiente de convecção [W/m2 oC] A – Área [m2] Tw – Temperatura da parede [oC] T – Temperatura do fluido [oC]

13 CAPÍTULO 1 - INTRODUÇÃO Convecção O coeficiente de convecção h depende de propriedades físicas do fluido, da velocidade do fluido, do tipo de escoamento, da geometria, etc.

14 CAPÍTULO 1 - INTRODUÇÃO Exemplo: Ar a Tar = 25oC escoa sobre uma placa lisa mantida a Tw = 150oC. O coeficiente de convecção é de 80 W/m2 oC. Determinar a taxa de calor considerando que a placa possui área de A = 1,5 m2. Solução:

15 CAPÍTULO 1 - INTRODUÇÃO Radiação Todos os corpos emitem continuamente energia devido a sua temperatura, a energia assim emitida é a radiação térmica. A radiação não necessita de um meio físico para se propagar. A energia se propaga por ondas eletromagnéticas ou por fótons.

16 CAPÍTULO 1 - INTRODUÇÃO Radiação Emissão da Radiação do Corpo Negro onde: - Poder emissivo do corpo negro - Constante de Stefan-Boltzmann igual a 5, W/m2K - Temperatura absoluta da superfície [K]

17 CAPÍTULO 1 - INTRODUÇÃO Radiação Emissão da Radiação de um Corpo Real onde: - Poder emissivo de um corpo real - Emissividade 0    1

18 - Radiação absorvida por um corpo real (irradiação)
CAPÍTULO 1 - INTRODUÇÃO Radiação Absorção de Radiação O fluxo de radiação que incide sobre um corpo negro é completamente absorvido por ele e é chamado de irradiação G. Se o fluxo de radiação incide sobre um corpo real, a energia absorvida por ele depende do poder de absorção  e é dado por: onde: - Radiação absorvida por um corpo real (irradiação) - Absortividade 0    1 - Radiação incidente

19 CAPÍTULO 1 - INTRODUÇÃO Radiação Troca de Radiação Admitindo s = s

20 CAPÍTULO 1 - INTRODUÇÃO Radiação Expressando a troca líquida de calor por radiação na forma de coeficiente de transferência de calor por radiação, tem-se: onde:

21 CAPÍTULO 1 - INTRODUÇÃO Exemplo: Uma tubulação de vapor d’água sem isolamento térmico atravessa uma sala cujas paredes encontram-se a 25oC. O diâmetro externo do tubo é de 0,07m, o comprimento de 3m, sua temperatura é de 200oC e sua emissividade igual a 0,8. Considerando a troca por radiação entre o tubo e a sala semelhante a aquela entre uma superfície pequena e um envoltório muito maior, determinar a taxa de calor perdida por radiação pela superfície do tubo. Solução:

22 q CAPÍTULO 1 - INTRODUÇÃO
1.3. Coeficiente Global de Transferência de Calor - U Muitos processos nas indústrias envolvem uma combinação da transferência de calor por condução e convecção. Para facilitar a análise, pode-se lançar mão do Coeficiente Global de Transferência de Calor. h2 k TA T2 T1 q TB h1 L

23 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Trocador de calor de correntes paralelas

24 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Trocador de calor em contracorrente

25 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Para os trocadores de calor apresentados q pode ser determinado por: Qual T deve ser utilizado?

26 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Trocador de calor de correntes paralelas

27 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Troca de calor no Trocador de calor (1) Troca de calor através de uma área elementar (2) onde é a diferença de temperatura local entre os fluidos, ou seja: (3)

28 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Diferenciando a equação (3) (4) O calor perdido pelo fluido quente é igual ao calor recebido pelo fluido frio (5) (6)

29 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Substituindo (5) e (6) em (4), resulta: (7) Mas logo:

30 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Integrando

31 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica (8) Para os fluidos quente e frio, respectivamente:

32 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Isolando e , respectivamente: (9) (10) substituindo (9) e (10) em

33 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Isolando e , respectivamente:

34 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica ou ainda logo ou

35 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Finalmente onde é a diferença de temperatura média logarítmica

36 CAPÍTULO 1 - INTRODUÇÃO 1.4. Diferença de Temperatura Média Logarítmica Considerações feitas: 1- O trocador de calor encontra-se isolado termicamente da vizinhança, a única troca de calor ocorre entre os fluidos; 2- A condução axial ao longo do tubo é desprezível; 3- Variações nas energias cinética e potencial são desprezíveis; 4- Os calores específicos dos fluidos são constantes; 5- O coeficiente global de transferência de calor é constante.

37 CAPÍTULO 1 - INTRODUÇÃO 1.5. Conservação de Energia – Primeira Lei da Termodinâmica A primeira lei da Termodinâmica é uma ferramenta de grande utilidade em problemas de transferência de calor. É importante obter a forma adequada da primeira lei para análise desses problemas. ou

38 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.1. A Equação da Taxa de Condução A Lei de Fourier é Fenomenológica T e x constante e A varia  qx é diretamente proporcional A e x constante e T varia  qx é diretamente proporcional A e T constante e x varia  qx é inversamente proporcional

39 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.1. A Equação da Taxa de Condução Para outros materiais a proporcionalidade se mantém, porém para os mesmos T, A e x o valor de q é diferente, logo: Onde  é a condutividade térmica em [W/mK]

40 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.1. A Equação da Taxa de Condução Taxa de transferência de calor Fluxo de calor - é uma grandeza vetorial - tem direção normal as superfícies de T = constante

41 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.1. A Equação da Taxa de Condução Forma geral para a equação do fluxo de condução de calor (Lei de Fourier) mas logo

42 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.2. Equação da Difusão de Calor Coordenadas Cartesianas

43 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.2. Equação da Difusão de Calor Coordenadas Cartesianas Conservação de Energia (2.1) Entrada (2.2) Saída (2.3)

44 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.2. Equação da Difusão de Calor Coordenadas Cartesianas Saída Expandindo em série de Taylor (2.4) (2.5) (2.6)

45 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.2. Equação da Difusão de Calor Coordenadas Cartesianas Geração de Energia (2.7) Acúmulo de Energia (2.8)

46 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.2. Equação da Difusão de Calor Coordenadas Cartesianas Fazendo (2.2), (2.4), (2.5), (2.6), (2.7) e (2.8) em (2.1), resulta:

47 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.2. Equação da Difusão de Calor Coordenadas Cartesianas (2.9) Pela lei de Fourier (2.10) (2.11) (2.12) Fazendo (2.10), (2.11) e (2.12) em (2.9) resulta:

48 CAPÍTULO 2 – INTRODUÇÃO A CONDUÇÃO DE CALOR
2.2. Equação da Difusão de Calor Coordenadas Cartesianas Dividindo por dx, dy e dz (2.13)


Carregar ppt "ENG309 – Fenômenos de Transporte III"

Apresentações semelhantes


Anúncios Google