11 Renato F. Jardim Instituto de Física Universidade de São Paulo Brazil Novos Óxidos Metálicos com Propriedades Eletrônicas Interessantes Maringá, Setembro.

Slides:



Advertisements
Apresentações semelhantes
Não linearidades de Terceira-ordem : Mistura de quatro ondas
Advertisements

semicondutores TEORIA DA MASSA EFETIVA ESTATÍSTICA DE PORTADORES
Química Analítica Instrumental
Algumas Evidências Experimentais
Tiras de carga e supercondutividade
DIRETORIA ACADÊMICA NÚCLEO DE CIÊNCIAS HUMANAS E ENGENHARIAS DISCIPLINA: INGLÊS FUNDAMENTAL - NOITE PROFESSOR: JOSÉ GERMANO DOS SANTOS PERÍODO LETIVO
Trocadores de Calor Prof. Gerônimo.
Semicondutores Continução : ESTATÍSTICA DE PORTADORES.
Fundamentos de Eletrônica Digital
Lecture 2 Properties of Fluids Units and Dimensions 1.
D.J.Gonsiorkiewicz* 1, J.C.Krause 1, A. V. dos Santos 1 and C. Paduani 2 1 URI – Santo Ângelo- RS - Brazil 2 UFSC – Florianópolis – SC - Brazil Investigation.
A lei da refração l1 e l1 q1 h q1 c q2 l2 g q2 l2.
O céu visto do chão O céu parece uma grande “cúpula”. Zênite e horizonte são definidos localmente.
Fundamentos da teoria dos semicondutores
Earth’s Plates.
Da escala micro para a escala nano As técnicas de crescimento epitaxial permitiram a miniaturização Como são produzidos os semicondutores ? MBE – Molecular.
Combining Population and Environmental Data A Typology Approach based on Patterns and its Generative Processes Trajectories Building up Trajectories of.
Nanotechnology in Brazil Fundação Centro Tecnológico de Minas Gerais – CETEC Margareth Spangler Andrade Physicist (UFMG), MSc. Minning and Metallurgy.
Cigré/Brasil CE B5 – Proteção e Automação Seminário Interno de Preparação para o Colóquio de Madri 2007 Rio de Janeiro, outubro/07.
Chapter 1 - The Foundations for a New Kind of Science Wolfram, Stephen. A New Kind of Science. Wolfram Media, Inc
Divisão Serviço da Hora Laboratório Primário de Tempo e Frequência 2015 SIM TFWG Workshop and Planning Meeting January 27 – 29 Panamá City, Panamá. Building.
Aula Prática 5. Fluxes Consider the flow in a rectangular duct, formed by two paralell plates (width b=1m and height 2h= 30cm) where air (=1.2 kg/m3)
FNI 2C EM 1 Transmission Electron Microscope. FNI 2C EM2 TEM Image of E. Coli.
Biologia Molecular e Celular de Nematóides BMP fone: segundas e sextas – 9:00hs
Campos et al. Factors associated with death from dengue in the state of Minas Gerais, Brazil: historical cohort study Objectives: To analyse the clinical.
Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa technology from seed Segurança em Redes Móveis /35 Mersenne.
Elaboração do aço. Steel recycling Rates ( ) Steel´s infinite recyclability sets it apart from other materials in that it can be recycled.
Cigré/Brasil CE B5 – Proteção e Automação Seminário Interno de Preparação para o Colóquio de Madri 2007 Rio de Janeiro, outubro/07.
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 1: An.
Video Capítulo 8: Impasses. Silberschatz, Galvin and Gagne  Video Operating System Concepts Assuntos n Modelo de Sistemas n Carcterização de.
10 o Simpósio Brasileiro de Computação Musical3 a 6 de Outubro de A User-Friendly Graphical System for Room Acoustics Measurement and Analysis Leo.
Team of Brazil Problem 09 Magnet and coin reporter: Bárbara Cruvinel Santiago.
Numerical modelling of TER Results obtained by UPC 9 th TER Technical Discussion, 17 th of June 2008, Chatenay-Malabry, France Dept. of Geotechnical Engineering.
Pontifícia Universidade Católica do Rio Grande do Sul Departamento de Engenharia Elétrica Fernando Soares dos Reis Didactic Platform for Power Electronics.
Energias renováveis Renewable energy. Americans using most renewable energy since 1930s Connie J. Spinardi | Getty Images Solar farm and wind turbines.
MAC Engenharia de Software Marco A. GerosaIME / USP Mais sobre análise e Outros Diagramas UML MAC0332 Engenharia de Software Marco Aurélio Gerosa.
O que são os alertas do Google?
Phase 1 – Search for prospective collaborations, Visits Workshops Nano-objects Magnetic Nanostructures Nanostructured Semiconductors Nanostructured.
SEIKO GROUP. ・ Sample: Azoxyanisole ・ DSC : DSC6200 ・ Sample :5 mg ・ Scan Rate : 20 ゚ C/min DSC.
Team of Brazil Problem 03 String of beads reporter: Bárbara Cruvinel Santiago.
Modelos Computacionais para Simulação do Processo de Expansão da Esquistossomose na Área Litorânea de Pernambuco
Manganum. Manganese (25), Iron (26), Cobalt (27, Nickel (28) All have two electrons in 4s and 5, 6, 7, or 8, respectively, in 3p.
Hyperfine Interactions Curso 2008 Clase 5- Página-1 Centro Brasileiro de Pesquisas Física - Rio de Janeiro -Brasil. Hyperfine Interactions The electric.
Limit Equlibrium Method. Limit Equilibrium Method Failure mechanisms are often complex and cannot be modelled by single wedges with plane surfaces. Analysis.
Aula Prática 5. Fluxes (Problem 1.07) Consider the flow in a rectangular duct, formed by two paralell plates (width b=1m and height 2h= 30cm) where air.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Pratical Lecture 10 Mecânica de Fluidos Ambiental 2015/2016.
CIÊNCIAS DA NATUREZA E SUAS TECNOLOGIAS ÁREA DE CONHECIMENTO: QUÍMICA Professor: Marcélio.
Aula III - Ligações Químicas Tutora: Marcia Pintos Rio Grande, 13 setembro de 2014.
APPLICATIONS OF DIFFERENTIAL EQUATIONS PRESENTED TO:DR.SADIA ARSHAD PRESENTED BY:ASHHAD ABBAS GILANI(026) SHAHAB ARSHAD(058) RIAZ HUSSAIN(060) MUHAMMAD.
Chapter 7 DC Machines Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for presentation or display 6/1/2016DC Machines1.
“Energy Consumption Tendencies and Technological Options” Prof. José Goldemberg.
Química e Física dos Materiais I Ano lectivo 2013/2014 Departamento de Química e Bioquímica Licenciatura em Ciências da Arte e do Património.
Emerson Siqueira Ministério da Educação Universidade Federal do Rio Grande do Norte Programa de Pós-Graduação em Ciências Farmacêuticas Disciplina: Sistemas.
CORRENTE E RESISTÊNCIA
A RISTIDES C IPRIANO A ULA 03 B ALANCEMENTO OXIDAÇÃO E REDUÇÃO OXIDAÇÃO E REDUÇÃO.
X-RAY DIFFRACTION ANALYSIS (XRD) BIOMATERIAIS I Alexandre Cunha.
CARACTERIZAÇÃO DE BAIRROS URBANOS EM IMAGENS DE ALTA RESOLUÇÃO ESPACIAL UTILIZANDO SISTEMA DE CLASSIFICAÇÃO BASEADO EM CONHECIMENTO Carolina Moutinho Duque.
Processo de Desenvolvimento de Software – RUP 10. Certificação Márcio Aurélio Ribeiro Moreira
Abril 2016 Gabriel Mormilho Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo Departamento de Administração EAD5853 Análise.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Pesquisa Operacional aplicada à Gestão de Produção e Logística Prof. Eng. Junior Buzatto Case 3.
Part I Object of Plasma Physics BACK. I. Object of Plasma Physics 1. Characterization of the Plasma State 2. Plasmas in Nature 3. Plasmas in the Laboratory.
Phases of Hackers. Module 1: Today’s Threat Landscape Module 2: Key Principles of Security Module 3: Understanding your enemy! Module 4: Phases of Hackers.
Equação de Evolução e método do volume-finito.
Escoamentos Turbulentos Reativos/ Turbulent Reactive Flows
Three analogies to explain reactive power Why an analogy? Reactive power is an essential aspect of the electricity system, but one that is difficult to.
2º ENCONTRO UAB-UFPA (Polo Barcarena)
Hydrodynamic of paste drying using glass beads in fluidized bed from Gaussian spectral analysis Flavia Tramontin Silveira Schaffka 1, Jhon Jairo Ramirez.
Pesquisadores envolvidos Recomenda-se Arial 20 ou Times New Roman 21.
Transcrição da apresentação:

11 Renato F. Jardim Instituto de Física Universidade de São Paulo Brazil Novos Óxidos Metálicos com Propriedades Eletrônicas Interessantes Maringá, Setembro de 2011

22 Introduction Motivation Examples of Interesting Families of Oxides Crystal Structure and General Physical Features Electronic Properties Metal-Insulator Transition - Nickelates Colossal Magnetoresistance – Manganites Few Applications Superconductivity – Cuprates Preliminary Conclusions Outline

33 Motivation 1)Efficient, Stable, Tunable, and Easy to Synthesize (including thin films) ! 2)Cheap (Methods and Materials) and Bringing New Physics in Materials Science ! 3)Easy for Modelling and Computing ! Oxides They are Abundant in the Nature !

4 Manganites - La 1-x Ca x MnO 3 La Ca Mn Mn O 3 2- Examples of Interesting Families of Oxides A = La, Y, Pr, Bi etc A’= Ca, Sr, Ba etc B = 3d (Transition Metal) and their solid solutions !!! Perovskites A 1-x A’ x BO 3

55 Tabela Periódica Alcalino Metal 3d Terra Rara O, Cl, F General Formula A 1-x A’ x BO 3

66 Examples of Interesting Families of Oxides Perovskites General Formula A 1-x A’ x BO 3 Tailoring Materials 1) Periodic Table 2) Materials Science 3) Phase Diagram 4) Thermodynamics – Phase Transitions 5) Magnetoelectric Coupling – Multiferroic Behavior 6) Strong Correlation Systems 7) Charge and Orbital Ordering

77 Alterando as Propriedades do Sistema Exemplo : Substituir Parcialmente La +3 por Ca +2 Produção de Pares Mn +3 /Mn +4 Criação de Buracos (Holes) Uma Série de Novas Fases com Diferentes Propriedades Magnéticas e de Transporte Examples of Interesting Families of Oxides LaMnO 3

8 Diagrama de Fase La 1-x Ca x MnO 3 Variação do teor de Ca ou de buracos (holes) ! Metal Isolante Examples of Interesting Families of Oxides LaMnO 3 CaMnO 3 Paramagnetico ???

99 Crystal Structure and General Physical Features Facil de modelar – Primeiros Princípios Física é concentrada nos octaedros de (TM)O 6 Portadores são Fortemente Correlacionados (a Física é alterada (e muito !))

10 Interação de Dupla Troca Interação de dupla troca - Double Exchange Interaction - Pares Mn +3 /Mn +4 Elétrons e g podem ser Itinerantes - Criação de vacâncias eletrônicas (holes) via Mn +4 egeg t 2g Mn +3 Mn +4 Elétrons t 2g são menos hibridizados com estados 2p e estabilizados pelo campo cristalino ! Localizados pelas fortes correlações eletrônicas e apresentam S = 3/2 ! Elétron e g são Itinerantes Análogo aos Elétrons de Condução ! t ij Electronic Properties

11 Transição Ferromagnética T C Transição metal-isolante T MI Forte correlação entre T MI e T C Ferromagnético Metálico Antiferromagnético Isolante Paramagnético Isolante Resistividade Elétrica e Magnetização em Manganitas La 0.6 Y 0.1 Ca 0.3 MnO 3 Electronic Properties

12 Acoplamento dos Graus de Liberdade de Spin, Carga e Rede Electronic Properties Variando parâmetros termodinâmicos La 0.7 Ca 0.3 MnO 3

13 Magnetorresistência Colossal La 0.6 Y 0.1 Ca 0.3 MnO 3 Electronic Properties Applying a Magnetic Field Sensor !!!

14 Electronic Properties Metal-Insulator Transition (Nd 1-x Eu x NiO 3 ) - First order nature of the transition; - Thermal Hysteresis - Tuning of T MI Perovskites Isolante Metal Variando a Temperatura

15 Electronic Properties Applying Pressure La 0.7 Ca 0.3 MnO 3 Sensor !!!

16 Electronic Properties Sensor !!! Nd 1-x Eu x NiO 3 Applying Pressure dT MI /dP quite high and close to 300 K!

17 Electronic Properties Parâmetro não Termodinâmico – Corrente Elétrica Cr-doped Nd 0.5 Ca 0.5 MnO 3 Sensor !!!

18 Aplicação Tecnológica LaNiO 3 -  Cu ~ 3x10 -6  300 K - Comportamento Metálico - Estrutura Perovskita (Casamento de Rede) - Fácil Preparação Filmes Finos de LaNiO 3 Dip Coating Vamos ver isso !

19 +  + Complexo M-CA Etileno Glicol Polímero H 2 O Preparação de amostras – Resumo Didático Método dos Precursores Poliméricos M n+ Ácido Cítrico - AC complexo M-CA Metal Tratar Termicamente – Filmes Finos Aplicação Tecnológica

20 Aplicação TecnológicaRevista FAPESP Material com constante dielétrica da ordem de 2000 (Aplicação para Memória Ferroelétrica). Utilizar filmes finos de LaNiO 3 como eletrodo ao invés de Si-Pt em dispositivos.

21 Electronic Properties Superconductivity (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 Oy - Supercondutividade nos planos de CuO - Forte Anisotropia - T C ~ 110 K Componentes Intergranulares ! Limitam a Aplicação Tecnológica ! Intergrain Properties of (Bi,Pb)-2223 Vamos Avançar Nesse Tópico ! Comportamento Metálico – Resistência de Superfície – Aplicação !

22 Caso Extremo – Separação Intra & Intergranular Sm 1.8 Ce 0.2 CuO 4-y Efeitos de Granularidade !!! (Restrições para Aplicações Tecnológicas !)

23 Efeitos de Granularidade (Simple Picture) !!! Como Melhorar Isso ? Vamos Avançar no Tópico !

24 Introduction Motivation Grain Boundary Angle Dependence on J c (0) Overcoming the misorientation of the grains in tapes and powders (Bi,Pb)-2223 and its properties Intergrain Properties of (Bi,Pb)-2223 Experimental Procedure - Sample preparation and characterizations Experimental Results X-ray diffraction, SEM,  (T,B a ) – Uniaxial and hydrostatic pressures Magnetization M(T,B a ) Three-level superconducting system Correlating normal and superconducting properties Transport Barkhausen-like noise Preliminary Conclusions Outline

25 Introduction - Motivation ● Grain Boundaries (GB) Limit Current Pathways in Polycrystalline Samples and Tapes ● Microcracks ● Misalignment of the Neighboring Grains – Angle  ● Increasing  results in a decrease of the spacing between the GB dislocations  : for  0 > 2 – 6 º ►  ~  ► J c (0) decreases ● Low vs. High Angles – Experimental Results J c (0) ~ exp(-  /  0 ) ● Deviation by > 2-3 º would already reduce J c (0) significantly !!! c-axis

26 H = 0 J c (0) ~ exp(-  /  0 ) R. Held et al., PRB (2009) For H > H c1 Transition from Abrikosov (A) – Josephson (J) Vortices Grain Boundary Angle Dependence of J c (0) For  «  0 Vortices on GB Abrikosov Vortices Normal Cores l(  ) Pinned by GB Increasing  ► increases l(  ) Mixed AJ Vortices Gurevich et al. PRL (2002)

27 Routes for the Alignment of the Grains ▼ Mechanical Deformations (rolling process, lamination, stretching etc) Controlling the Microstructure (T, atmosphere etc) Addictives during the Synthesis (composite + pinning) Hot Pressing Cold Pressing The TASK is ► To Align the Grains c-axis Electrical Current Examples for Practical Applications

28 YBCO Coated Tape – Close up Outer Cu strips can be replaced by stainless steel strips J c (77 K, 0) ~ 10 2 – 1.5x10 2 A/cm 2 width 4mm, thickness 0.1 – 0.2 mm, length 0.1 km Oriented buffer layer avoiding chemical reaction

29 (Bi,Pb)-2223-Ag Tape – Close up J c (77 K, 0) ~ 10 2 – 2x10 2 A/cm 2 width 4mm, thickness 2 mm, length 1 km ● Kyushu Institute of Technology, Japan (2010) Superconducting Magnet 77 K; 50 A; generating 0.5 T Dimensions: 132 mm outside  ; 52 mm inside  ; 120 mm in height Weight is 3.5 kg.

30 The Bi-2223 (or (Bi,Pb)-2223) Material T c (onset) ~ 112 K T c (  = 0) ~ 105 K c ~ 37.1 Å a ~ b = 5.4 Å ● Tetragonal crystal structure – Space Group P222 ● Two charge-reservoir layers (Bi(Pb)-O, Sr-O) sandwiching three CuO 2 planes ● T C is little sensitive to the Oxygen content ● No evidence of ageing effect ● Anisotropy  (~ 30 ???) is lower than Bi-2212 ● H c1 (77 K) ~ 10 mT (100 Oe) » YBCO (~ 40 Oe) Critical Current Density

31 ● J c (77 K, 0 T) ~ 70x10 3 A/cm 2 - filaments (1999) ● J c (77 K, 0 T) ~ 15x10 3 A/cm km long (  ~ 1 mm 2) (2002) ● Local J c (77 K, 0 T) up to 1.8x10 5 A/cm 2 - (2001) ● J c (77 K) of the grains ~ 5x10 8 A/cm 2 - (2001) ● 19-filament tape – Local J c (77 K, 0 T) ~ 2x10 5 A/cm 2 ; tape monocore ~ J c (77 K, 0 T) ~ 4x10 4 A/cm 2 (2009) ● Commercially available current leads (~ 1m long) J c (77 K, 0 T) ~ 2x10 3 A/cm 2 ● J c (77 K) of the grains ~ 5x10 8 A/cm 2 - (2001) ~ to the limit of J c !!! Problem of the softness of the Ag matrix (Tapes) by applying dispersed MgO in the Ag matrix Solved by adding a thin layer of stainless steel reinforcement to both sides of the tapes enabling the tapes to withstand a tensile stress of 300 MPa and a tensile strain of 0.5% at 77 K (Bi,Pb)-2223 – Critical Current Density in Tapes & Filaments

32 Intergrain Properties of (Bi,Pb)-2223 ● Much has been learned about the intragranular properties but little about the intergranular properties of High-T c ● Intergranular properties are very important for understanding the tunneling of the carriers between adjacent grains; ● very high B (B < 14 T) are well studied ● How about the transport very low B (B < 70 mT) ? ● The very low magnetic fields are essentially absent !!! ● Very high T C, relatively easy to be synthesized, ● Sample Preparation – Bi 1.65 Pb 0.35 Sr 2 Ca 2 Cu 3 O 10+  ● XRD and SEM ● Magnetization M(T, B) ● Transport very low B (B < 70 mT) ● Transport very high B (B < 18 T) ● Transport Barkhausen-like B < H c1 Experimental

33 Sample Preparation and Physical Characterizations Few Important Steps for Single-Phase Powder Material Powder Preparation – Mixing BaCO 3 ; SrCO 3 ; CuO; Bi 2 O 3 ; PbO Heat Treatments 750 ºC ( ºC ( ºC (40h + 40h + 40 h) Uniaxial (100 – 600 MPa);  ~ 10 mm; thickness < 1 mm Cold Pressed Isostatic (100 – 300 MPa);  ~ 10 mm; thickness < 1 mm Last Heat 850 ºC (40 h) – After Pressuring !!! Summary of the Pressuring Process

34 Summary of the Process Problems in Compacting Powders Uniaxially End Capping (high die-wall friction) Ring Capping (excessive differential Springback) Lamination (excessively high P) Vertical Cracks (springback) Schematic Draw - Pressings Expected Results

35 Highly oriented grains along the c direction Top View XRD Data That’s what we want !!! (but it is not easy to get it !)

36 XRD Powder Diffraction Data taken mostly on pellets ! Powder Sample BP5 BP4 BP3 BP2 Lotgering factor F(00l)

37 Lotgering factor F(00l) ● I 0(00l) and I 0(hkl) are the intensities of (00l) and (hkl) peaks (powder sample) ● I (00l) and I (hkl) are the intensities of (00l) and (hkl) peaks (pellet sample) Increasing Uniaxial Compacting Pressure ▼ Better alignment of the grains along the c-axis !!! Comparing Uniaxial & Hydrostatic Pressures Govea-Alcaide et al. (2007)

38 Comparing Uniaxial and Hydrostatic Pressures Mune et al. (2007) J c (77 K, B a ); B a < 7 mT (70 Oe) Uniaxial Isostatic J c (77 K, 0) is much higher for the uniaxially compacting sample ! The pressure is not homogeneous throughout the sample Josephson-like

39 SEM Images Inhomogeneous distribution of pressure face A face B ● Relative intensity of the peaks ● (200) 25 % face A; 50 % face B ●  (T, H) data face A face B B a = 43 mT B a = 0 mT T off Changes are related to: ● ≠ degree of texture ● Intergrain connectivity

40 Grain Size l ~ 4  m thickness d ~ 0.1  m SEM Images ● Bi-2212 – Pressed ~ 490 MPa ● Smaller grains ● Low degree of orientation ● (Bi-Pb)-2223 (~ 590 MPa) ● Platelet-like Grains ● Highly Oriented Grains The superconducting properties

41 Temperature and magnetic field dependence of magnetization M(T) The Model (i) Grains behave as a Bean-like superconductor (in the window of T and B a ); (ii) Grains exhibit saturation at the same applied H s ; (iii) The M(B a ) curves deviate from the linear behavior at similar values of B cl – Determine H c1g. H c1g HsHs

42 Three-level superconductivity system Critical Current Data + Virgin curves + Returning curves B max + ????Flux-trapping curves Dois “Plateaus”

43 Three-level superconducting system ● the superconducting grains; ● the superconducting clusters (strong coupled superconducting grains); ● weak links between superconducting clusters. grains clusters weak links between clusters From M(77 K, H) data J cg ~ 1x10 8 A/m 2 Slightly smaller J cg ~ 5x10 8 A/m 2 Flückiger (2009)

44 Correlation between normal and superconducting properties Set of samples (Bi-Pb)-2223 P T con ~ constant; T off (table) Same Grains ≠ intergranular features

45 Temperature dependence of the electrical resistivity -  (T) Let`s borrow a model (Diaz et al. (PRB 1997))  n has two contributions (i)Misalignment of the grains (ii) Microstructural defects X-crystals (T. Fuji) Paracoherent state  ab = 0

46 Paracoherent state - electrical resistivity -  (T) This is a complicated measurement (Joule-self heating effect, temperaure controll etc) Grains are in the superconducting state ! Current density sufficient to overcome the intergranular one !

47 Parameters of the samples subjected to uniaxial pressure Appreciable reduction (  str ) of microstructural defects ! Increasing of the degree of texture (f) ! “Perfect” polycrystalline sample (no voids, cracks, extra phases etc)  str = 1, f ≈ 1/3 ! J c (77 K, 0 T) ~ 4x10 2 A/cm 2 - our sample J c (77 K, 0 T) ~ 2x10 3 A/cm 2 - commercial

48 Intergranular Critical Current and Pinning Energy Flux-Trapping curves The behavior of J c (77 K, B a ) can not be fully described by the Bean model Three-level superconducting system ! JcJc BaBa Virgin Curves Josephson-like

49 Correlating Critical Current, Pinning Energy, and Defects ● J c (0) and U 0 scale with  n ● The behavior is related to changes in the microstructure (see Table) ● J c (0) changes little for P > 350 MPa: Is there any “limit” for Jc(0) ?

50 Transport Barkhausen-like noise in (Bi-Pb)-2223 Aim – To gain further information from the noise related to the movement of the “intergranular” vortices in (Bi-Pb)-2223 ● Noise is expected when an ac magnetic field penetrates the intergranular media; ● Analogous – Domain walls in ferromagnetic materials ● Here the noise is detected in  instead of M

51 Typical Barkhausen-noise data At 77 K H c1g > 7 mT Maximum B a ~ 5 mT ac triangular-wave Maximum Ba ~ 5.5 mT Frequency ~ 1 Hz  t = t f – t i t i – time where the noise first appears t f – time where the noise vanishes Sample is subjected to an excitation current [J/Jc(0) ~ 0.5]

52 Some Barkhausen-noise data J/J c (0) ● The noise occurs at ≠ “time” when the sample is subjected to ≠ J/J c (0)

53 ● The dissipation “process” is complicated ! very low B a (first stage) – vortex motion in few regions of the sample !!! Relevant issues to be addressed

54 Superconducting state Normal state Relevant issues to be addressed ● The dissipation “process” is complicated ! very low B a (first stage) – vortex motion in few regions of the sample !

55 Preliminary Conclusions ● General Issues ● Perovskites offer a unique opportunity for studying the wide range of physical properties in oxides; ● Their crystal structure is quite simple and can be modeled; ● Several physical features: metal-insulator transitions, magnetism, colossal magnetoresistance, ferroelectricity, multiferroic behavior and so on; ● Superconductivity ● Uniaxially pressed samples are a powerful tool for studying the intergranular features of High-T c materials; ● Issues of Interest: dissipation, current limited transport properties and so on; ● Excellent for disclosing the occurrence of a three-level superconducting system; ● Samples with high critical current density; ● Normal and superconducting parameters are easily correlated; ● Transport Barkhausen-like noise can be used for quality control (production of tapes and wires); ● Issues to be addressed: ● Material tailoring and nanotechnology (oxides); ● High quality singleX-tals; ● Theory: Strong correlated electron systems and quantum phase transitions.

56 Acknowledgements Marcia T. Escote – UFABC José A. Souza – UFABC Alessandro Carneiro – UFG Sueli Masunaga – USP Solange Andrade – USP Vagner Barbeta – FEI Maria J. Sandim – EEL Ernesto Govea–Alcaide – UO, Cuba Ivan Garcia Fornaris – UC, Cuba Pedro Mune – UO, Cuba Milton Torikachvili – SDSU, USA John Neumeier - MSU, USA Brazil Agencies

57 Um pouco do nosso Lab na USP - SP Bobina supercondutora ~ 17 Tesla Refrigerador de diluição T> 0,02 K Medidas de propriedades magnéticas Medidas de resistividade e susceptibilidade Bobinas supercondutoras ~ 20 Tesla Criostato de He 3 T > 0,4 K

58 Laboratório de Estado Sólido e Baixas Temperaturas Medidas de propriedades magnéticas (SQUID) Bobinas supercondutoras ~ 7 Tesla Temperatura 2K < T < 300K

59 Onde me encontrar………. OOPSSS !!!

60 Muito Obrigado Pela Atenção !!!

61

62

63 The Model

64

65

67 Average grain size ~ 5  m

68

69 Govea-Alcaide et al. 2005

70 grains clusters weak links between clusters