Universidade Estadual de São Paulo Escola de Engenharia de Lorena

Slides:



Advertisements
Apresentações semelhantes
Misturas e Soluções.
Advertisements

Processos de Separação de Misturas
Recuperação de produtos de Bioprocessos
Métodos de Separação de Misturas.
Operações de separação e purificação de compostos
Sedimentação e Operações Afins
Trabalho de Química Análise Imediata.
DIMENSIONAMENTO DE FLOCULADORES MECANIZADOS
Procesamiento de minerales I Desaguamento
Centrifugação Purificação de Produtos Biotecnológicos
Departamento de Engenharia Química e Engenharia de Alimentos
Separação de Misturas Heterogêneas 1) catação:
PROCESSOS DE SEPARAÇÃO POR MEMBRANAS
Métodos de Purificação de Baixa Resolução
Substâncias e Métodos de Separação
Recuperação dos Produtos de Bioprocessos
SEPARAÇÃO DE MISTURAS Os seguintes processos permitem a separação dos vários constituintes de uma mistura. Cada um destes processos tem uma utilização.
Purificação de Produtos Biotecnológicos
CENTRIFUGAÇÃO.
Sistemas de Separação por Membrana
Introdução a Engenharia de Alimentos
PROCESSOS DE TRATAMENTO DE ÁGUAS RESIDUÁRIAS
ESCOLA DE ENGENHARIA DE LORENA
MÉTODOS DE SEPARAÇÃO DE MISTURAS
Universidade Estadual de São Paulo Escola de Engenharia de Lorena
SEPARAÇÃO E RECUPERAÇÃO DE BIOPRODUTOS
Tratamento de águas residuárias
arrastado pelo líquido Separação do ouro das areias auríferas
Concentração O meio de fermentação é uma mistura complexa de biomassa, macromoléculas dissolvidas, nutrientes e eletrólitos. Normalmente o produto desejado.
Processos de separação de Misturas
REVISÃO – AVALIAÇÃO BIMESTRAL DE CIÊNCIAS
Camada de polarização e Fouling
REVISÃO – AVALIAÇÃO BIMESTRAL DE CIÊNCIAS 6º Ano AB
Universidade Estadual de São Paulo Escola de Engenharia de Lorena
Universidade Estadual de São Paulo Escola de Engenharia de Lorena Prof. Arnaldo Marcio Ramalho Prata Respiração Microbiana.
Viscosidade A viscosidade corresponde à resistência de um líquido em fluir (escoar) por uma superfície ou duto. Não está diretamente relacionada com a.
Aula III – Química geral
CENTRIFUGAÇÃO.
ESTERILIZAÇÃO CONTÍNUA
Introdução à Engenharia Bioquímica
Filtração 20 de Março de 2007.
SEPARAÇÃO DE PROTEINAS POR CROMATOGRAFIA
ETA CONVENCIONAL DE TRAMENTOCOMPLETO É a Estação de Tratamento de Água que apresenta todos os processos de tratamento: coagulação, floculação, decantação,
Métodos para a quantificação de proteínas
MÉTODOS ANALÍTICOS OFF-LINE
Extração Líquido-Líquido
Módulo III - Métodos de Preservação da Carne
Agitação e aeração Oxigênio na fase gasosa Oxigênio na fase líquida
COLETORES GRAVITACIONAIS E CICLONES Prof. Marcelo José Raiol Souza
ADSORVEDORES Prof. Marcelo José Raiol Souza
SEPARAÇÃO POR MEMBRANAS
ESTERILIZAÇÃO.
PROCESSOS DE SEPARAÇÃO POR MEMBRANAS
Aspectos econômicos relativos à Separação e Recuperação de Bioprodutos Classificação dos bioprocessos -Bioprocessos REATIVOS -Bioprocessos EXTRATIVOS.
SECAGEM Remoção da água, por evaporação, de sólidos ou soluções, levando à imobilização de reagentes químicos e consequente interrupção da atividade biológica.
SEPARAÇÃO E RECUPERAÇÃO DE BIOPRODUTOS Há uma grande variedade de produtos biotecnológicos, os quais podemos agrupar em três principais categorias: Insumos.
PROCESSOS DE SEPARAÇÃO POR MEMBRANAS
Viscosidade A viscosidade corresponde à resistência de um líquido em fluir (escoar) por uma superfície ou duto. Não está diretamente relacionada com a.
Escola Modelo, Construindo o Futuro!
QUÍMICA GERAL E INORGÂNICA
PROCESSOS DE SEPARAÇÃO DE MISTURAS
Pré-tratamentos do leite:
UFPR Setor de Ciências da Saúde Curso de Farmácia Disciplina de Física Industrial Operação Unitária de Centrifugação Prof. Dr. Marco André Cardoso.
ESCOAMENTO EM MEIOS POROSOS
CENTRIFUGAÇÃO.
Processos de Separação de Misturas. Análise Imediata Conjunto de Processos físicos utilizados para separar cada uma das substâncias que compõe uma mistura.
Filtração Tipos de filtros de pressão: Filtro prensa
Transcrição da apresentação:

Universidade Estadual de São Paulo Escola de Engenharia de Lorena Separação e recuperação de bioprodutos Prof. Arnaldo Márcio Ramalho Prata

As etapas do processo fermentativo até o final da fermentação são denominadas linha ascendente ou “upstream” e as etapas de recuperação do produto e de tratamentos de resíduos são chamadas linha descendente ou “downstream”

Esquema geral do processo fermentativo Preparo de inóculo (microrganismo) Preparo do meio tratamento da matéria-prima mistura de nutrientes ajuste de pH tratamento térmico Ar Esterilização Fermentação propriamente dita (BIORREATOR) Linha ascendente Processos à montante “upstream” Recuperação do produto Tratamentos de resíduos Produto Linha descendente Processos à jusante “downstream”

SEPARAÇÃO E RECUPERAÇÃO DE BIOPRODUTOS Linha ascendente “Upstream” Processos relacionados à etapa de fermentação Micro-organismo Inóculo Meio de fermentação Fermentação Linha descendente “Downstream” Tecnologia para recuperação e purificação de bioprodutos Clarificação Rompimento Celular Separação e Purificação Tratamentos finais

Definição: Separação do produto do meio fermentado, colocando-o na forma mais pura possível para a aplicação a que se destina. A etapa de recuperação de produto começa após a determinação correta do final da fermentação. Esta deve levar em conta o máximo da produção técnica e a máxima produção econômica. O produto de interesse pode estar no interior da célula ou no meio de fermentação (lembrar que há situações especiais).

SEPARAÇÃO E RECUPERAÇÃO DE BIOPRODUTOS Serão abordados os procedimentos envolvidos na recuperação de bioprodutos do tipo insumos químicos e biomoléculas e microrganismos, exemplificados a seguir: Insumos químicos e biomoléculas Álcoois Polímeros Ácidos orgânicos Vitaminas Solventes Aminoácidos Antibióticos Enzimas Hormônios Poliésteres

Microrganismos Exemplos de enzimas Inóculo para processos fermentativos Microrganismos fixadores de nitrogênio Microrganismos para controle biológico Vacinas Probióticos Exemplos de enzimas Protease de Bacillus Glicose oxidase Amilase de Bacillus Invertase Glicoamilase Lisozima Glicose-isomerase Penicilina acilase Renina microbiana Lactase -amilase Lipase Amilase fúngica Xilanase

É importante observar a escala de aplicação dos diversos métodos de separação e purificação de produtos biotecnológicos: Escala de laboratório, normalmente para produtos destinados a estudos acadêmicos e aplicações específicas Escala industrial, quando se busca a obtenção de grandes quantidades de produto para fins comerciais

SEPARAÇÃO E RECUPERAÇÃO DE BIOPRODUTOS Tem como objetivo recuperar o produto desejado de forma eficiente, segura e reprodutível Está incluída num conjunto de atividades que estão envolvidas no desenvolvimento de um produto Necessita avaliação econômica Deve atender às exigências da legislação Deve levar em conta a produção em larga escala Envolve um conjunto de operações unitárias

Esquema Geral Meio Fermentado com células Clarific ação (Separação das células do meio) Células (produtos intracelulares) Rompimento das células Remoção de fragmentos de células Fração sólida Sobrenadante Separação/Concentração de moléculas Purificação Tratamentos finais (produtos extracelulares) Esquema Geral

Processamento Ascendente Influência das etapas da linha ascendente sobre o processo de recuperação do produto Seleção MO Adaptação MO Preparação de inóculo Estágios de pré-fermentação Processo fermentativo Característica dos microrganismos Localização do produto Estabilidade do produto dentro das células Produção de metabólitos secundários ou impurezas

Separação e purificação de bioprodutos Etapa complexa Características do meio influenciam São processos desafiadores

Não existe um procedimento único de recuperação de produto Cada processo apresenta suas peculiaridades devido às características específicas dos diferentes produtos e dos microrganismos.

Operações envolvidas no processo de purificação de bioprodutos Clarificação Filtração convencional Tamanho das partículas Centrifugação Tamanho e densidade das partículas Filtração tangencial (Membranas) Floculação Hidrofobicidade de partículas Rompimento celular Homogeneização Cisalhamento Ultra-som Moagem em moinho de bolas Rompimento químico ou enzimático Hidrólise, solubilização ou desidratação de moléculas que compõem a parede ou a Membrana Celular

Purificação de baixa resolução Purificação de alta resolução Precipitação Solubilidade Ultrafiltração (membranas) Massa molar e raio hidrodinâmico de moléculas Extração em sistemas de duas fases líquidas Solubilidade, massa molecular Purificação de alta resolução Cromatografia de troca-iônica Tipo e densidade da biomolécula Cromatografia de afinidade Sítios específicos (adsorção) Cromatografia de imunoafinidade Sítios específicos (antigeno/anticorpo) Cromatografia de interação hidrofóbica Hidrofobicidade Cromatografia de exclusão molecular Massa molar Membranas adsortivas Massa molar e sítios específicos Tratamentos finais Cristalização Solubilidade e Características de equilíbrio líquido-sólido Liofilização Características de equilíbrio sólido-vapor Secagem Características de equilíbrio líquido-vapor

Clarificação Separação das células suspensas de um meio fermentado Operações unitárias viáveis em escala industrial: Filtração convencional Filtração tangencial Centrifugação A operação unitária adequada depende da faixa de dimensão da partícula a ser removida:

Separação das células suspensas no meio fermentado Clarificação Separação das células suspensas no meio fermentado Filtração Aplica-se à clarificação de grandes volumes Realizada em condições não assépticas Aplicado principalmente para fungos filamentosos: micélio com densidade muito baixa

Filtração Convencional Clarificação Filtração Convencional Aplica-se à clarificação de grandes volumes de suspensões diluídas de células, produtos extracelulares e situações que não necessitam de assepsia.

Princípio de separação Filtração: tamanho da partícula (também forma e compressibilidade do material) A suspensão, sob pressão, é perpendicularmente direcionada a um meio filtrante (filtração convencional). Aplica-se a suspensões diluídas de células. “A fração volumétrica que atravessa o meio filtrante é denominada filtrado e o depósito de sólidos (sobretudo células) sobre o meio filtrante chama-se torta.” Alguns tipos de filtro: 1. Rotatório (mais adequado para meios biológicos, pois não é afetado pela compressibilidade da torta) 2. De pressão 3. Folha (disco) horizontal

Clarificação Filtração Convencional Equipamento utilizado: Filtro Rotativo a Vácuo (FRV) O tambor fica parcialmente submerso em um recipiente que contém a suspensão. Ocorre leve agitação para evitar a sedimentação. Suspensão é alimentada pela parte externa do tambor. A redução de pressão (vácuo), ocorre no interior do tambor, promovendo a filtração (formação da torta). Tambor oco e rotativo (1 rpm), coberto com uma malha metálica filtrante, recoberta com terra diatomácea. Capacidade de 0,1 a 0,2 m3/h

Esquema de um Filtro de Pressão

Fatores que influenciam a velocidade de filtração - permeabilidade de leito (K) - área de filtração (A) - viscosidade do líquido () - espessura do leito (L) - resistência do leito de filtração (L/K) - compressibilidade da torta (S) - concentração celular do líquido (X) - diferença de pressão através do leito (P) - const. relacionada a tamanho e forma das células (’)

O tempo (t) necessário para a filtração de um volume V de suspensão contendo células sujeitas à compressibilidade, sob uma determinada pressão e através de uma área A é dado por:  . ’ . X V2 t = 2 . P(1-S) A2 Obs.: - S varia de 0 a 1,0 - Tortas de células microbianas podem ter S de até 0,8 - Para tortas rígidas, S = 0

Clarificação Filtração Tangencial: Microfiltração A tensão de cisalhamento do fluído minimiza o acúmulo de células e seus fragmentos na superfície das membranas. O fluxo de filtrado e o coeficiente de retenção de solutos ou sólidos são influenciados pela formação de um gradiente de concentração de células ou solutos próximos à superfície da membrana e pelo fouling Fluidos de alimentação escoam tangencialmente à superfície filtrante. A formação do gradiente de concentração é reversível com a alteração das condições de operação do processo, enquanto o fouling necessita principalmente do controle da pressão.

Clarificação Filtração Tangencial: Microfiltração Membrana de fibra oca Possuem elevada área filtrante por unidade de filtro. Bastante susceptíveis à entupimentos. Membrana tipo placa e quadro Possuem pequenas áreas filtrantes por unidade de volume. Podem ser aplicados em regime turbulento. A limpeza é fácil.

• 10-4 – 10-3 10-3 – 10-2 10-2 – 10-1 10-1 – 101 Pressão (bar) Tamanho de poro da membrana (μm) 10-4 – 10-3 10-1 – 101 10-3 – 10-2 10-2 – 10-1 Pressão (bar) Microfiltração < 1 Osmose Reversa 30 - 60 Ultrafiltração 1 - 10 Nanofiltração 20 - 40 • Bactéria, gordura Proteinas Lactose Minerais (sais) Água Retido (concentrado) Permeado (filtrado) Entrada

Sistema de filtração tangencial tipo placa

Sistema de filtração tangencial tipo placa

Clarificação Centrifugação A centrifugação de meios fermentados é uma tecnologia já consolidada. Suas vantagens sobre o processo de filtração são: Processo completamente contínuo; Alta capacidade para pequenos volumes; Curto tempo de residência; Equipamento esterilizável por vapor; Limpeza e operação completamente automatizadas; Processamento do produto em condições assépticas; Processamento de microrganismos perigosos em sistema fechado; Inexistência de custos com auxiliares de filtração, membranas e produtos químicos.

Clarificação t2 <<<< t1 t1 t2 Centrifugação Princípio de separação: diferença de densidade (também tamanho de partícula e viscosidade) t1 t2 t2 <<<< t1 Método que acelera o processo de sedimentação por ação de um campo gravitacional centrífugo Baseia-se na diferença de densidade entre a célula e o meio líquido, na viscosidade do meio líquido, na força motriz, na distância radial desde o centro da centrífuga até a célula e no diâmetro da partícula.

Alguns tipos de centrífuga a) Tubular; b) Câmara; c) Disco; d) Rolo

Clarificação Centrifuga tubular Podem operar sob refrigeração (13.000 a 17.000 x g) Capacidade limitada de volume Aplica-se em suspensões de no máximo 30 g/L de células

Centrífuga tubular de alta velocidade

Centrífuga Tubular 1500 L/h

Clarificação https://www.youtube.com/watch?v=dxTT_bP6IwI Centrifuga de disco Aplica-se em suspensões de no máximo 250 g/L de células Atuam em valores menores de centrifugação (5.000 a 15.000 x g) Permite processamento continuo de 200 m3/h Discos aumentam a área de sedimentação e reduzem o tempo necessário para centrifugação https://www.youtube.com/watch?v=dxTT_bP6IwI

Centrífuga de rolo (decanter) https://www.youtube.com/watch?v=FhS5vN4r5LA https://www.youtube.com/watch?v=w1E452YD1zw https://www.youtube.com/watch?v=jGwBpGELngk

Fatores de aceleração das centrífugas mais comuns Ultracentrífugas 105 – 106 x g Centrífugas tubulares 13000 – 17000 x g Centrífugas de câmara 6000 - 11000 x g Centrífugas de disco 5000 - 15000 x g Centrífugas de rolo 1500 – 4500 x g Critério para ampliação: Fator de aceleração . tempo ==> . t Se uma separação satisfatória é atingida com 3000xg durante 5 minutos, o mesmo resultado pode ser alcançado com 1500xg e 10 minutos, em escala industrial.

O fluxo volumétrico de alimentação para uma centrífuga pode ser determinado pela expressão: d2 . . g. . A 18  Q = Onde: Q é o fluxo volumétrico de alimentação  é a diferença de densidade (dens. Sólido – dens. do líquido) g é a aceleração da gravidade d é o diâmetro da partícula  é o fator de aceleração A é o equivalente de área do rotor  é a viscosidade dinâmica do líquido

Cálculo de g N2 . R 89500 g = Onde: N é a velocidade ou frequência de rotação do eixo (rpm) R é o raio da circunferência (cm) Raio: distância entre o centro do eixo e o fundo do tubo ou da câmara de sedimentação

Exemplo de aplicação para centrífuga Uma determinada indústria apresenta uma produção de meio fermentado igual a 180 m3/dia. (a) Considerando as características do meio e da centrífuga a ser empregada, quantas unidades deste equipamento você solicitaria ao departamento de compras da empresa, de modo a garantir a separação das células do meio de fermentação, sem risco de parar a produção? (b) Considere, agora, que foi estabe-lecido que serão compradas 8 centrífugas com equivalente de área igual a 0,10 m2. Qual deve ser o fator de aceleração destas centrífugas? Dados: Densidade do sólido = 1000 kg/m3 Densidade do líquido = 900 kg/m3 Viscosidade do líquido = 10-2 kg/m.s Diâmetro da partícula = 0,01 mm Fator de aceleração = 8000 Equivalente de área = 0,10 m2   Q = d2 .  . g .  . A 18 . 