A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Física Primeiro Ano.

Apresentações semelhantes


Apresentação em tema: "Física Primeiro Ano."— Transcrição da apresentação:

1 Física Primeiro Ano

2 Vetor Cinemática - Vetor
Intensidade ou módulo: é o valor numérico da grandeza vetorial. É representado pelo tamanho do vetor. Direção é definida pela reta que contem o vetor (e suas paralelas). Sentido é a indicação de para onde aponta o vetor. É representado pela seta. Vetor

3 Cinemática - Vetor Soma de vetores
Aplica-se a soma vetorial quando se deseja saber o efeito da ação de duas ou mais grandezas vetoriais que atua num mesmo corpo. Assim imagine que duas forças F1 e F2 atuem num mesmo corpo. Como deveria ser uma força (dita resultante) que atuando sozinha nesse corpo causasse o mesmo efeito das outras duas agindo juntas?

4 Cinemática - Vetor Soma de vetores F1 F2
Um corpo com ação de duas forças. Determinação da força resultante pelo método do paralelogramo. F1 F2 FR O vetor força resultante FR tem mesmo efeito das duas forças F1 e F2 juntas. FR

5 Cinemática Conceitos básicos: Vetor posição (r ou x):
É a grandeza vetorial que indica onde o móvel (objeto) encontra-se. O vetor posição tem origem em um referencial (origem do sistema cartesiano) e extremidade no móvel. trajetória r2 r1 x y Δr Vetor deslocamento (Δr ou Δ x): É a diferença entre dois vetores posição. É sempre medido em linha reta e nos movimentos curvos é diferente da distância d percorrida pelo móvel.

6 Cinemática Movimento e Repouso:
Um móvel (objeto) está em movimento quando o vetor posição muda em relação a um referencial. Um móvel está em repouso quando o vetor posição não muda em relação a um referencial. Trajetória: É a linha formada por todos os pontos por onde o móvel percorreu. Espaço S: É uma grandeza escalar que indica onde o móvel está, como as placas que indicam o “Km” nas rodovias. -10 10 20

7 Cinemática v = ΔS Δt v = Δr Δt Importante: Km/h m/s x 3,6 ÷ 3,6
Velocidade escalar média Velocidade vetorial média v = ΔS Δt v = Δr Δt Importante: Km/h m/s x 3,6 ÷ 3,6 ΔS > v > 0 Movimento progressivo ΔS < v < 0 Movimento regressivo

8 1) Determine a variação de espaço ΔS do móvel no intervalo de 0 a 8s.
Exemplo 1: Um móvel passa pela placa de -10m quando o cronômetro é acionado. Move-se para direita e em 6s alcança a placa +20m e inverte o movimento. Quando o móvel passa novamente pela placa de +10m o cronômetro encerra sua medição indicando 8s. -10 10 20 1) Determine a variação de espaço ΔS do móvel no intervalo de 0 a 8s. ΔS = Sfinal – Sinicial = S8 – S0 ΔS = +10 – (-10) = 20m 2) Determine a distância percorrida d pelo móvel de 0 a 8s. d = Σ |ΔS | = |ΔSida |+|ΔSvolta | d = = 40m

9 Interpretação do exemplo 1:
-10 10 20 Δr O móvel saiu da placa -10m, foi até a placa +20m, inverteu o movimento e finalizou na placa +10m. Entre o início e o fim do movimento, o móvel: Teve um ΔS = 20m Teve um d = 40m Observe que o deslocamento pode ser estimado em um valor próximo de 18m pois é medido em linha reta, uma vez que é um vetor. Deslocamento de 18m.

10 Determine a velocidade escalar média do móvel no intervalo de 0 a 8s.
Exemplo 1: Um móvel passa pela placa de -10m quando o cronômetro é acionado. Move-se para direita e em 6s alcança a placa +20m e inverte o movimento. Quando o móvel passa novamente pela placa de +10m o cronômetro encerra sua medição indicando 8s. -10 10 20 Determine a velocidade escalar média do móvel no intervalo de 0 a 8s. ΔS = 20m e Δt = 8s V = 20/8 = 2,50m/s Determine a velocidade vetorial média do móvel no intervalo de 0 a 8s. Δr = 18m e Δt = 8s V = 18/8 = 2,25m/s

11 Velocidade Velocidade vetorial média: Velocidade escalar média:
Velocidade escalar instantânea É a situação imposta quando Δt é levada ao limite próximo de zero. Resolve-se por derivada.

12 Aceleração Aceleração vetorial média Aceleração escalar média
Aceleração escalar instantânea É a situação imposta quando Δt é levada ao limite próximo de zero. Resolve-se por derivada:

13 Aplicação de derivada Seja conhecido a equação dos espaços S=3t³-4t²-5t+4 (SI). Determine: A velocidade no instante 2s é: A aceleração no instante 2s é: a) S = 3t³ - 4t² - 5t + 4 Ou seja: v = 9t² - 8t - 5 Para t = 2s tem-se: v = -15m/s b) v = 9t² - 8t - 5 Ou seja: v = 18t – 8 Para t = 2s tem-se: a = 28m/s²

14 Velocidade relativa vA vB vR = |vA - vB| vA vB vR = |vA| + |vB|

15 Cálculo do tempo para o encontro dos dois móveis:
VR Exemplo: Dois namorados apaixonados estão distantes 120m. Quando se vêem partem um em direção do outro. Ele com velocidade de 8m/s e ela com velocidade de 2m/s. Quanto tempo os namorados levam para se abraçarem a partir do momento que se viram? Quanto percorreu cada um dos dois namorados?

16 Estando um ao encontro do outro, a velocidade relativa é dada por:
Ele percorreu: Ela percorreu:

17 Classificação do movimento
Lembre-se: a = Δv Δt a > 0 e v > 0 Movimento progressivo e acelerado v a + _ a < 0 e v < 0 Movimento retrogrado e acelerado v a + _ a < 0 e v > 0 Movimento progressivo e retardado a v + _ a > 0 e v < 0 Movimento retrogrado e retardado v a + _

18 Função horária da posição: Cálculo da velocidade média:
Movimento retilíneo uniforme (MRU) Características: Trajetória retilínea Velocidade constante e diferente de zero Aceleração nula (a= 0) Percorre espaços iguais em tempos iguais Função horária da posição: S = S0 + vt Cálculo da velocidade média: v = Δt ΔS

19 Gráficos do MRU Área A = ΔS Aceleração sempre nula V + reta crescente
V – reta decrescente Área A = ΔS Aceleração sempre nula

20 Movimento Retilíneo Uniformemente Variado (MRUV)
Características: Trajetória retilínea Velocidade uniformemente variada Aceleração constante Espaços variados com o tempos S = S0 + v0 t + at2 2 Função horária da posição: Função horária da velocidade: v = v0 + at Equação de Torricelli: v2 = v02 + 2aΔS

21 Gráficos do MRUV Área A = Δv Vértice: inversão do movimento v = 0
a +  reta crescente a -  reta decrescente Área A = Δv

22 Queda livre – corpo abandonado
Lembre-se: - Ocorre livres da resistência do ar. - Trajetória retilínea. - Parte do repouso. - É um MRUA. v = gt - Aceleração constante a = g Corpos que caem simultaneamente de uma mesma altura , tocam o solo no mesmo instante (independente de duas massas, seus volumes ou sua formas). h = gt2 2 v = 2gh

23 Lançamento vertical Lembre-se: v = v0 - gt gt2 h = h0 + v0t - 2
- Ocorrem livres da resistência do ar. - Trajetória retilínea. - Na subida v > 0 (considera-se positivo para cima). v = v0 - gt - É um MRUV. - Aceleração constante a = -g - O tempo de subida é igual ao tempo de descida. h = h0 + v0t - gt2 2 - Em um mesmo ponto da trajetória os módulos das velocidades na subida e na descida são iguais. v2 = v2 - 2gΔh

24 Composição de movimentos
Princípio da independência dos movimentos simultâneos "Se o móvel apresenta um movimento composto, cada um dos movimentos componentes se realiza como se os demais não existissem." Onde se aplica? O tempo de travessia de um barco em um rio não depende da velocidade da correnteza. Quando um objeto é lançado horizontalmente no vácuo, o tempo de queda não depende da velocidade de lançamento.

25 Composição de movimentos
O tempo de travessia de um barco em um rio não depende da velocidade da correnteza. Vmotor Vcorrenteza Exemplo: Um barco com velocidade própria de 4m/s atravessa um rio de 40m de largura e correnteza de 3m/s. Determinar o tempo de travessia e o deslocamento rio abaixo no final da travessia. Tempo de travessia: V= ΔS/Δt 4 = 40/ Δt Δt = 10s Deslocamento rio abaixo: V= ΔS/Δt ΔS = 3.10 ΔS = 30m

26 Lançamento oblíquo vx = v0.cosӨ v0y = v0.senӨ Componente horizontal
Projeção no eixo X: MRU vx = v0.cosӨ Projeção no eixo y: MRUV Componente vertical v0y = v0.senӨ

27 Lançamento Oblíquo Um objeto é lançado com velocidade de 10m/s sob um ângulo de 30º no vácuo. Determine: o tempo total do móvel no ar. o alcance do objeto. a máxima altura atingida pelo objeto. 30º Vo=10m/s Vx=8m/s Vx=5m/s Decomposição: Vx= V.cosθ = 10.cos30º Vx=10.0,8 =8m/s Vy=V.senθ = 10.sen30º Vy = 10.0,5 =5m/s

28 Lançamento Oblíquo Um objeto é lançado com velocidade de 10m/s sob um ângulo de 30º no vácuo. a) Determine o tempo total do móvel no ar Decomposição: (já calculado) Vx = 8m/s Vy = 5m/s 30º Vo=10m/s Solução: a) Tempo de subida: Eixo y (MRUV) v = vo+a.t vx = vox- g.t 0 = 15 – 10.t t = 1,5s Tempo total: o dobro do tempo de subida: t = 3s

29 Lançamento Oblíquo Um objeto é lançado com velocidade de 10m/s sob um ângulo de 30º no vácuo. b) Determine o alcance do objeto Já calculado: Vx = 8m/s Vy = 5m/s tTotal = 3s 30º Vo=10m/s A Vx=8m/s b) Alcance: Eixo x (MRU) ΔS = v.Δt A = 8.3 A = 24m

30 Lançamento Oblíquo Um objeto é lançado com velocidade de 10m/s sob um ângulo de 30º no vácuo. c) Determine a máxima altura atingida pelo objeto Decomposição: Vx = 8m/s Vy = 5m/s tTotal = 3s 30º Vo=10m/s Vx=5m/s H c) Máxima altura: Eixo y (MRUV) v² = vo² + 2.g.H vy² = voy² + 2.g.H 0² = 5² + 2.(-10).H H=25/20 H=1,25m

31 Lançamento horizontal
Eixo X A = vo .t Eixo Y h = gt2 2 vy = gt vy = 2gΔh

32 Movimento circular uniforme (MCU)
Período (constante) É o tempo necessário para a partícula realizar uma volta completa. T = t n Frequência (constante) É a relação entre o número de voltas realizada pela partícula em certo intervalo de tempo. f = n t

33 Relação entre velocidade linear e angular
Movimento circular uniforme (MCU) Velocidade linear ou tangencial É a velocidade correspondente a distância percorrida (circunferência) em certo intervalo de tempo. v = 2πR T v = 2πRf Velocidade angular É a velocidade correspondente ao ângulo descrito pelo raio ligado a partícula em certo intervalo de tempo. ω = 2π f ω = T Relação entre velocidade linear e angular V = ω .R

34 Aceleração centrípeta
Movimento circular uniforme (MCU) Aceleração centrípeta É a aceleração provenientes da variação da direção do vetor velocidade. É constante em módulo. A aceleração centrípeta em cada instante é perpendicular ao vetor velocidade. Portanto aponta para o centro. ac = v2 R ac = ω2.R

35 aA < aB a1 > a2 > a3 Acoplamento de polias vA = vB
Acoplamento por eixo Acoplamento por correia ou tangencial vA = vB ω 1 = ω 2 = ω 3 ω A < ω B v1 > v2 > v3 aA < aB a1 > a2 > a3

36 N (Newton), Kgf(quilograma-força) dyn(dina)
Dinâmica Força Força é todo agente físico capaz de: Modificar um corpo. Produzir movimento em um corpo. Modificar o movimento de um corpo. Unidades de força: N (Newton), Kgf(quilograma-força) dyn(dina) 10N = 1Kgf = dyn

37 Dinâmica Força resultante FR Força resultante (FR) ou resultante da ação de várias forças que atuam sobre um corpo é a soma vetorial de todas as forças que atuam no corpo.

38 Massa é a medida da inércia de um corpo.
Dinâmica Inércia é a tendência que um corpo tem de manter-se em seu estado de origem. Ou dito de outra forma é a dificuldade de movimentar um corpo ou de modificar o movimento do corpo. Assim, se um homem tentar empurrar um fusca e um caminhão, será muito mais difícil deslocar o caminhão do seu estado inicial que o fusca. Com efeito a inércia do caminhão é maior. Massa é a medida da inércia de um corpo. É fácil perceber no exemplo anterior que o caminhão tem muito mais massa que o fusca e por isso que tem mais inércia.

39 Então diz-se que estas partículas são ‘partículas livres’.
Dinâmica Partícula Livre Considere duas partículas muito distantes uma da outra e de qualquer outra partícula do universo de forma que não existe interação entre as partículas e nem delas com o restante do universo. Então diz-se que estas partículas são ‘partículas livres’.

40 Se ele está inicialmente em repouso, permanece em repouso.
Dinâmica Primeira lei de Newton “Se a resultante das forças que atua sobre um corpo é zero este corpo tende a manter seu estado de origem: Se ele está inicialmente em repouso, permanece em repouso. Se ele está inicialmente em movimento, permanece em movimento com velocidade constante, ou seja, em MRU.” Enunciado 1

41 f Dinâmica Referencial inercial
Primeira lei de Newton f “Num referencial em que uma partícula livre está em repouso qualquer outra partícula livre somente poderá estar em repouso ou em MRU.” Enunciado 2 Referencial inercial Um referencial em que é válida a Primeira lei de Newton é um Referencial Inercial.

42 (Princípio da Inércia)
Dinâmica Primeira Lei de Newton (Princípio da Inércia) FR = 0 V = constante = repouso V = constante ≠ MRU

43 (Princípio Fundamental da Dinâmica)
Segunda Lei de Newton (Princípio Fundamental da Dinâmica) A aceleração adquirida por um corpo é diretamente proporcional a força resultante externa que atua sobre o corpo. Esta aceleração terá a mesma direção e no mesmo sentido da força, e é inversamente proporcional a massa do corpo. FR = m.a

44 (Princípio da Ação e Reação)
Terceira Lei de Newton (Princípio da Ação e Reação) Para um referencial inercial, toda interação entre dois corpos A e B é representado por um par de forças: o corpo A exerce uma força FA (ação) sobre o corpo B e esse exerce uma força FB (reação) sobre o corpo A. Estas forças têm: - Mesma intensidade |FA | = |FB| = F - Mesma direção - Sentidos opostos - Mesma natureza Aplicadas em corpos distintos Simultâneas

45 Forças notáveis da dinâmica
Forças de contato Força aplicada Força normal Força de tração ou tensão Força elástica Força de atrito Força centrípeta Forças sem contato Força gravitacional (peso) Força elétrica Força magnética

46 Estudo das forças Forças Normal N
A força normal é uma força perpendicular ao plano de apoio. Sua reação é sempre outra Normal N’. Assim um corpo quando faz contato com outro tem uma força normal N e o outro corpo também tem uma normal N’. N P N’ A força normal é uma força de contato e sua reação não é o peso. A reação do peso atua no centro da Terra. A reação da normal esta no outro corpo. Mas |N | = |P |

47 A força de tração sempre estica o fio.
Estudo das forças Forças de tração ou tensão T A força de tração T é uma força que atua nos tirantes (fios e cabos). Esta força surge por consequência da ação de outros esforços. A força de tração sempre estica o fio. A reação da força de tração também é força de tração e atua nos blocos.

48 Estudo das forças Forças de Atrito Fat A força de atrito Fat é uma força que atua nas duas superfícies em contato onde existe alguma rugosidade. Na figura o pé faz força para trás no piso e a reação que também é uma força de atrito, é uma força do piso sobre o pé, para frente.

49 Estudo das forças Forças de Atrito Fat
A força de atrito Fat é uma força que atua nas duas superfícies em contato onde existe alguma rugosidade. Estão representados na figura as forças que atuam no bloco. A força de atrito é contrária ao movimento. A força de atrito tem como reação uma outra força (também de atrito) que atua na superfície.

50 Força de atrito Fc = μc.N Fe = μe.N Tipos de atrito - gráfico
Corpo parado: Fat = Faplicada Iminência do movimento: Fat = Fe Corpo em movimento: Fat = Fc Fat Faplicada Fc Fe 45° Início do movimento Fc = μc.N Fe = μe.N

51 Lei de Hooke Válida para os sistemas elásticos, a Lei de Hooke é definida quando o sistema é submetido a uma força dita elástica Fel e sofre uma deformação (elongação) x tal que: F = -Kx A força elástica Fel é restauradora pois tende a restituir a posição inicial da mola. Assim o sinal negativo indica que a força elástica Fel tem sentido contrário ao deslocamento x. Fel Quanto maior a constante elástica K, mais “dura” é a mola.

52 Aplicação da 2ª lei de Newton
Dois blocos A e B de 2Kg e 3Kg respectivamente estão preso por um fio e são puxadas para cima por uma força de 80N. Determine a aceleração e a tração no fio. + 1º) Determinar os vetores que influenciam no movimento. Nesse caso são as forças de 80N, o peso de 20N e o peso de 30N. F =80N 2 Kg PA=20N 2º) Determinar o sentido do movimento. Estabelecer sinais (+ e -). Preferencialmente colocar + para o lado do movimento. 3 Kg PB=30N _

53 Aplicação da 2ª lei de Newton
Dois blocos A e B de 2Kg e 3Kg respectivamente estão preso por um fio e são puxadas para cima por uma força de 80N. Determine a aceleração e a tração no fio. + F =80N 3º) Determinar a aceleração usando a equação FR=m.a. FR=m.a = (2+3).a 30 = 5.a a = 6m/s² 2 Kg PA=20N 3 Kg PB=30N _

54 Aplicação da 2ª lei de Newton
Dois blocos A e B de 2Kg e 3Kg respectivamente estão preso por um fio e são puxadas para cima por uma força de 80N. Determine a aceleração e a tração no fio. F =80N 2 Kg 3 Kg PB=30N PA=20N + _ 3 Kg PB=30N + _ T 4º) Determinar a tração usando a equação FR=m.a. Para calcular a tração faz-se um corte imaginário no fio onde tem-se a tração esticando o fio. FR=m.a T – 30 = 3.6 T = T = 48N

55 Gravitação Leis de Kepler
Gravitação universal Leis de Kepler As leis de Kepler valem para os planetas do sistema solar e para outros sistemas planetários assim como para órbitas de satélites em torno dos planetas. PRIMEIRA LEI DE KEPLER Cada planeta descreve uma órbita elíptica em torno do Sol, que ocupa um dos focos da elipse.

56 V Gravitação Leis de Kepler SEGUNDA LEI DE KEPLER
Gravitação universal Leis de Kepler SEGUNDA LEI DE KEPLER O raio vetor que une o planeta ao Sol varre áreas iguais em intervalos de tempos iguais. Periélio V Afélio V

57 Quanto mais afastado o planeta do sol, maior o seu ano.
Gravitação Leis de Kepler TERCEIRA LEI DE KEPLER O quadrado do período de revolução de cada planeta é proporcional ao cubo do raio médio da respectiva órbita. CONCLUSÃO Quanto mais afastado o planeta do sol, maior o seu ano. T² = K R³

58 Gravitação Lei da Gravitação Universal
Segundo a Lei da Gravitação Universal de Newton todos os corpos apresentam uma interação que depende de suas massas. Esta interação pode ser verificada pela força gravitacional. M m F = G Mm d2 Esta lei vale para os pequenos objetos e para planetas e astros.

59 Gravitação Campo Gravitacional
h d R m O Campo Gravitacional gerado pela massa de um planeta em certo ponto próximo depende da massa deste planeta e da distância desse ponto considerado ao centro do planeta. g = GM d2

60 Gravitação Velocidade Orbital
M h d R m v Quando um objeto é lançado horizontalmente cai! Mas se fosse jogado com uma velocidade surpreendente entraria em órbita. A velocidade orbital do objeto (satélite) é tanto maior quanto menor a distância entre o centro do planeta e o satélite. v = GM d

61 Trabalho Mecânico de uma força
W = F.d.cosθ Definição de Trabalho W Motor Quando a força é a favor do deslocamento. Resistente Quando a força é contrária ao deslocamento. O trabalho mecânico W é nulo quando a Força é nula ou quando o deslocamento é nulo ou ainda quando o ângulo entre eles é 90°

62 Trabalho Mecânico de uma força
W = F.d.cosθ Definição de Trabalho W Trabalho da força peso Trabalho é + na descida e - na descida Trabalho da força de atrito Trabalho da força centrípeta Trabalho da força elástica Trabalho é - na compressão ou alongamento e + quando volta

63 O trabalho mecânico pode ser calculado pela área do gráfico Fxd
O trabalho mecânico não depende da trajetória. O trabalho mecânico não depende do tempo gasto no percurso. O trabalho mecânico pode ser calculado pela área do gráfico Fxd

64 A unidade de potencia é j/s = W = Watt
Potência Potência é definida como a rapidez com que ocorre a transformação da energia. A unidade de potencia é j/s = W = Watt P = E Δt Potência mecânica pode ser calculada pelo trabalho. Potência instantânea P = F. v P = W Δt Unidade: W Unidade: W = N.m/s

65 Rendimento O rendimento é definida como a razão entre a potência útil (ou energia útil) e a potência total (ou energia total). Rendimento η = Pu Pt Wu Wt Eu Et = Também pode ser calculado em percentual η = Eu Et x100

66 Energia Mecânica (EM) Energia potencial gravitacional
Energia mecânica total Energia potencial elástica Energia cinética

67 Conservação da Energia
Energia total é conservada Energia mecânica é conservada SISTEMAS Sistema conservativo Energia total é conservada Energia mecânica NÃO é conservada Sistema dissipativo

68 SISTEMA CONSERVATIVO EMA = EMB A
Energia total se conserva Energia mecânica do sistema se conserva SISTEMA CONSERVATIVO EMA = EMB A Onde a ENERGIA MECÂNICA EM é dada por: EM = EC + EP Neste caso (SISTEMA CONSERVATIVO) é possível usar a equação de Torricelli B v2 = v02 + 2gH

69 SISTEMA DISSIPATIVO EMA = EMB + perdas A
Energia total se conserva Energia mecânica do sistema não se conserva SISTEMA DISSIPATIVO EMA = EMB + perdas A Onde a ENERGIA MECÂNICA EM é dada por: EM = EC + EP Nos sistemas dissipativos as perdas são normalmente por atrito transformando a energia potencial em térmica. Neste caso não é possível usar a equação de Torricelli. B

70 TEOREMA DA ENERGIA CINÉTICA
Em qualquer sistema (conservativo ou dissipativo) é válido o teorema da energia cinética Teorema de energia cinética WFR = ΔEc = mv2 2 mv02 Se ocorrerem choques perfeitamente elásticos, em sistemas conservativos, a energia mecânica dos sistema se conserva

71 Mecânica Impulsiva

72 Mecânica Impulsiva e conservação do momento linear
Teorema do Impulso I = ΔQ Quantidade de Movimento ou momento linear Q = m.v Impulso I = F. Δt A quantidade de movimento de um sistema de corpos isolados de forças externas é constante Importante Qantes = Qdepois

73 Estática MF1 - MF2 - MP = 0 N FR = 0 FRX = 0 Equilíbrio de um Ponto
MR = 0 Equilíbrio de um corpo Barra homogênea com o peso não desprezível F1 F2 P N Condições de Equilíbrio MF1 - MF2 - MP = 0 F1.d1 - F2.d2 - P.d3 = 0

74 Alavancas Fixa Potente Resistente Roldanas FR 2n FP =
Você consegue classificar cada uma! Fixa Potente Resistente Roldanas FR FR 2n FP = Qual o valor assumido pela força potente para o sistema ficar em equilíbrio? FP


Carregar ppt "Física Primeiro Ano."

Apresentações semelhantes


Anúncios Google