A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. Carlos Ruberto Fragoso Júnior

Apresentações semelhantes


Apresentação em tema: "Prof. Carlos Ruberto Fragoso Júnior"— Transcrição da apresentação:

1 Prof. Carlos Ruberto Fragoso Júnior
Modelos Chuva-Vazão Prof. Carlos Ruberto Fragoso Júnior 11:43

2 Tópicos Revisão Modelos Conceituais Distribuídos IPHS1 MGB-IPH

3 Modelo IPH2

4 Modelos Precipitação-Vazão
Características dos modelos Discretização das bacias : concentrado; distribuído por bacia; distribuído por célula

5 Modelos semi-distribuídos
Modelos concentrados aplicados em sub-bacias unidas por uma rede de drenagem são, às vezes, denominados modelos semi-distribuídos.

6 Distribuídos x concentrados
Vantagens distribuído incorpora variabilidade da chuva incorpora variabilidade das características da bacia permite gerar resultados em pontos intermediários Vantagens concentrado mais simples mais rápido mais fácil calibrar

7 Quanto à extensão temporal
Eventos Hidrologia urbana Eventos observados ou cheias de projeto Em geral pode-se desprezar evapotranspiração Séries contínuas Representar cheias e estiagens Volumes, picos, recessões Evapotranspiração deve ser incluída

8 Estrutura de modelos concentrados e distribuídos
Estrutura básica módulo bacia módulo rio, reservatório Módulo bacia Geração de escoamento Módulo rio Propagação de escoamento rio bacia reservatório

9 Modelos Conceituais Chuva-Vazão Distribuídos

10 IPHS1 Equipe de Desenvolvimento:
IPH - Instituto de Pesquisas Hidráulicas - UFRGS Coordenador do Projeto pelo IPH: Carlos Eduardo Morelli Tucci Colaboradores no desenvolvimento da versão FORTRAN: Adolfo O. N. Villanueva Daniel G. Allasia Marllus G. das Neves Walter Collischonn FEA - Faculdade de Engenharia Agrícola - UFPel Agência para o Desenvolvimento da Lagoa Mirim - UFPel Coordenador de Desenvolvimento pela UFPel : João S. Viegas Filho Colaboradora de Desenvolvimento pela UFPel: Rita de Cássia Fraga Damé Analistas de Sistemas, Desenvolvedor: Adriano Rochedo Conceição Setor de Hidráulica e Saneamento - Departamento de Física – FURG Coordenador de Desenvolvimento versão FORTRAN pela FURG: Rutinéia Tassi Colaborador de Desenvolvimento pela FURG: Ezequiel Wustrow Souza Universidad Nacional de Córdoba - UNC Coordenador de Desenvolvimento manuais em espanhol: Juan Carlos Bertoni Colaborador da UNC: Carlos Catalini IPHS1 windows® 10

11 IPHS1 rutineia@gmail.com Material Disponível:
Manual do Usuário do IPHS1 Manual de Fundamentos do IPHS1 Manual de Exemplos do IPHS1 Banco de Dados de Exemplos do IPHS1 Home page: Contatos: IPHS1 windows® 11

12 Modelo IPHS1 IPHS1 windows® 12

13 IPHS1 Configurações do computador
O IPHS1 utiliza como símbolo de decimal o “ponto” Se for necessário mudar essa configuração, acessar a opção: Painel de Controle/Data, hora, idioma e opções regionais/Opções regionais e idioma/Opções regionais/Personalizar/Símbolo decimal =>”.” ou Control Panel/ Regional and language options/Regional options/Customize/Decimal symbol => “.” IPHS1 windows® 13

14 Modelo IPHS1 Estrutura é baseada na operação hidrológica Sub-bacia
trecho de rio reservatório seção de leitura divisão

15 Modelo IPHS1 - Sub-bacia
Entrada: Precipitação (t) entrada dos postos de precipitação independente das sub-bacias. Ponderação de acordo com a influência de cada posto. A precipitação pode ser histórica ou de projeto para ser reordenada. B1 Postos pluviométricos B2 B3 B4 B5

16 Modelo IPHS1 - Sub-bacia
Opções de modelos de separação de escoamento: SCS, Horton modificado (IPH2), HEC1,  opções de propagação : Clark, HEC1, HU, Hymo (Nash), SCS. Opção de água subterrânea : reservatório linear simples.

17 Apredendo a utilizar o modelo IPHS1
Algumas ferramentas Barra de Menus Barra de Ferramentas Principal Caixa de Títulos, Descrições e Comentários Barra de Ferramentas Hidrográficas Barra de Avisos Área de Projetos 17

18 IPHS1 windows® 18

19 IPHS1 Aprendendo a utilizar o IPHS1 Área de projeto
Barra de Ferramentas Principal Caixa de Títulos Barra de Menus Área de projeto Barra de Ferramentas Hidrológicas IPHS1 windows® Barra de Avisos 19

20 IPHS1

21 Solução Criar novo projeto Definir intervalo de tempo
vamos usar 0,5 hora, porque os dados estão em 0,5 hora e o HU fica bem definido Número de intervalos de tempo com chuva o enunciado dá 5 intervalos com chuva Número total de intervalos de tempo vamos adotar 20 para ter folga e descrever bem o hidrograma resultante

22

23 Definir topologia e objetos

24 Características da bacia
Separação de escoamento método SCS com CN = 80 Propagação na bacia com HU dado A área e o tempo de concentração não seriam necessários para os cálculos mas o programa exige estes dados (embora não os utilize)

25 Cuidado para dividir ordenadas do HU por 10!

26 Resultado

27 Vamos Exercitar!!!

28 Mais adiante voltaremos a usar o IPHS1!

29 Modelo hidrológico de grandes bacias – MGB-IPH

30 Apresentação Modelo desenvolvido durante doutorado Walter Collischonn sob orientação do prof. Carlos Tucci (IPH UFRGS) Aplicado em várias bacias no Brasil Adequado para: Avaliação de disponibilidade hídrica em locais com poucos dados Previsão hidrológica Avaliação de efeitos de atividades antrópicas em grandes bacias

31 Grandes bacias x pequenas bacias
Situação normal: Em grandes bacias existem longas séries de medições de vazão. Em pequenas bacias as séries de medição de vazão são mais curtas (quando existem). Muitas vezes a solução é usar um modelo hidrológico para estender a série.

32 Grandes bacias x pequenas bacias
Em pequenas bacias é possível usar modelos concentrados. Em grandes bacias a variabilidade é maior. Modelos concentrados são menos adequados. Mesmo assim os modelos distribuídos mais famosos são os de pequenas bacias.

33 Modelos distribuídos de pequenas bacias
Referências mais freqüentes: SHE e Topmodel. Desenvolvidos na esperança de que as medições pontuais de uma série de variáveis na bacia poderia evitar a calibração de parâmetros. Exigem grande quantidade de dados.

34 Problemas de hidrologia de grandes bacias
variabilidade plurianual mudanças de uso do solo previsão em tempo real

35 Quais são os processos que contribuem para a variabilidade plurianual da vazão de uma bacia?
Rio Paraguai em Porto Esperança, MS - ( km2)

36 Como é possível aproveitar as previsões meteorológicas no manejo de recursos hídricos?
Previsão do modelo regional do CPTEC - INPE

37 Quais são as conseqüências das mudanças de uso do solo em larga escala?
Rio Taquari, MS.

38 Modelo hidrológico de grandes bacias desenvolvido
Baseado no modelo LARSIM, com algumas adaptações do modelo VIC-2L. Balanço de água no solo simplificado Evapotranspiração por Penman - Monteith, conforme Shuttleworth (1993). Propagação pelo método de Muskingun Cunge nos rios. Utiliza grade regular de células (+ - 10x10 km) Utiliza intervalo de tempo diário ou menor Representa variabilidade interna das células Desenvolvido para grandes bacias (> 104 km2)

39 Processos representados
Evapotranspiração Interceptação Armazenamento de água no solo Escoamento nas células Escoamento em rios e reservatórios célula fonte célula com curso d´água célula exutório

40 Dados de entrada Séries de chuva e vazão
Séries de temperatura, pressão, insolação, umidade relativa do ar e velocidade do vento Imagens de sensoriamento remoto Tipos de solo MNT Cartas topográficas Seções transversais de rios

41 MNT Bacia discretizada e rede de drenagem

42 Cobertura e uso Blocos Solo +

43 Variabilidade no interior da célula
A cobertura, o uso e o tipo de solo são heterogêneos dentro de uma célula Cada célula é dividida em blocos

44 Balanço vertical em cada bloco

45 Escoamento na célula

46 Trecho de rio

47 Variabilidade no interior do bloco
w i = capacidade de armazenamento de cada um dos reservatórios A capacidade de armazenamento do solo é considerada variável. O solo pode ser entendido como um grande número de pequenos reservatórios de capacidade variável.

48

49 Rio Taquari - Antas solos argilosos derrame basáltico alta declividade
pouca sazonalidade Quase km2 na foz

50 Bacia Taquari - Antas discretizada
269 células 5 blocos Não foram considerados os diferentes tipos de solos

51 Postos fluviométricos
Principal posto: Muçum  km2

52 Posto Muçum km2 Bacia do rio Taquari RS - ( km2)

53 Posto Carreiro 4.000 km2 Bacia do rio Taquari RS - ( km2)

54 Bacia do Rio Uruguai km2 até início do trecho internacional

55 Discretização da bacia do rio Uruguai
681 células 8 blocos

56 Resultados aplicação sem calibração
Passo Caxambu km2 Parâmetros “emprestados” da bacia Taquari Antas

57 Rio Uruguai: Resultados aplicação com calibração
Passo Caxambu km2

58 Curva de permanência de vazões

59 Mais detalhes do MGB-IPH?


Carregar ppt "Prof. Carlos Ruberto Fragoso Júnior"

Apresentações semelhantes


Anúncios Google