A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

CONFIABILIDADE E OTIMIZAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO

Apresentações semelhantes


Apresentação em tema: "CONFIABILIDADE E OTIMIZAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO"— Transcrição da apresentação:

1 CONFIABILIDADE E OTIMIZAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO
UNIVERSIDADE FEDERAL DO PARANÁ Programa de Pós-Graduação em Métodos Numéricos em Engenharia CONFIABILIDADE E OTIMIZAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO Aluno: Roberto Mauro Felix Squarcio Orientador: Prof. Dr. Anselmo Chaves Neto

2 OBJETIVO GERAL Teoria da Confiabilidade Delineamento Experimental
Probabilidade de Falha Importância das Variáveis de Projeto Delineamento Experimental Otimização de Custo

3 OBJETIVO ESPECÍFICO Métodos da Confiabilidade
FORM/SORM Método de Monte Carlo Redes Neurais Delineamento de Experimentos Modelamentos de Krakovski aplicados em Estruturas de Concreto Armado

4 GENERALIZAÇÃO DO PROBLEMA DA CONFIABILIDADE
Violação do Estado Limite Probabilidade de Falha

5 MÉTODOS DO SEGUNDO MOMENTO DE PRIMEIRA ORDEM (FOSM)
Série de Taylor, em X* Índice de Confiabilidade

6 MÉTODOS DO SEGUNDO MOMENTO DE PRIMEIRA ORDEM (FOSM)
Transformação O índice de confiabilidade é a distância de Y* à origem do espaço das normais reduzidas

7 MÉTODOS DO SEGUNDO MOMENTO DE PRIMEIRA ORDEM (FOSM)
Função Limite Média e Variância Índice de Confiabilidade:

8 MÉTODOS DO SEGUNDO MOMENTO (FORM/SORM)
FORM – First Order Reliability Method SORM – Second Order Reliability Method

9 FIRST ORDER RELIABILITY METHODS - FORM
Qualquer distribuição e v.a. não são independentes Transformamos em normais reduzidas: A distribuição não normal e a distribuição normal com a mesma média, e que conduzam a mesma probabilidade de falha. Sendo a v.a. normal reduzida obtida por Então, A determinação de X* é iterativa e o valor de pf é atualizado em cada iteração.

10 SECOND ORDER RELIABILITY METHODS - SORM
As superfícies de estado limite, g(X) são parabólicas ou esféricas, no ponto de dimensionamento X* Proposta de Breitung (1984) onde

11 MÉTODO DE MONTE CARLO Geração de valores para as variáveis básicas de entrada de acordo com suas funções de distribuição. Análise determinística do modelo do sistema e verificação de eventual violação do estado limite. Estimativa da probabilidade de ruptura:

12 MÉTODO DE MONTE CARLO Técnicas de Simulação Pura
Probabilidade de falha Transforma a resolução da integral numa simples contagem dos pontos que estão dentro da região de probabilidade de falha Observações na região de interesse g(X)<0

13 MÉTODO DE MONTE CARLO Técnicas de Redução da Variância
Amostragem por Importância Podemos reescrever a Probabilidade de Falha:

14 MÉTODO DE MONTE CARLO Técnicas de Redução da Variância
Amostragem Estratificada Domínio de integração é dividido em k regiões. A probabilidade de falha

15 REDES NEURAIS Algoritmo Backpropagation - Princípio da Aprendizagem
Algoritmo Gradiente Descendente com Momentum Minimiza o erro quadrático médio Algoritmo de Levenberg-Marquardt – Matriz Hessiana

16 DELINEAMENTO DE EXPERIMENTOS
Função Objetivo (Custo) b é a largura da secção transversal da viga; h é a altura da secção transversal da viga; AS é a área da barra de aço; S é a massa específica do aço; CS é o custo do aço por unidade de massa; CC é o custo do concreto por unidade de volume; CF é o custo do molde, por unidade de área.

17 Tabela 1. Custos dos Materiais
DELINEAMENTO DE EXPERIMENTOS Tabela 1. Custos dos Materiais Materiais Unidade Preço (R$) Concreto cm3 15 MPa 136,53 20 MPa 148,5 25 MPa 162,77 30 MPa 176,12 Aço kg 4,03 Molde cm2 40,71

18 Variáveis Normalizadas
DELINEAMENTO DE EXPERIMENTOS Tabela 2. Resultado do One-side Gradient Design I Method k x(k,0) Proc. u Variáveis Normalizadas Variáveis Externas Dimensões Custo Total (R$) b h fck - 18 58 20 100,77 1 (a) 102,31 2 60 101,25 3 25 100,85 (b) 4 -1 16 99,23 5 -2 14 56 97,37 6 -3 12 95,86 7 -4 10 94,35

19 Variáveis Normalizadas Variáveis Externas Dimensões
DELINEAMENTO DE EXPERIMENTOS Tabela 3. Resultado do One-side Gradient Design II Method k x(k,0) Proc. u Variáveis Normalizadas Variáveis Externas Dimensões Custo Total (R$) b h fck - 18 58 20 100,77 1 (a) -1 16 99,23 2 56 100,4 3 15 101,41 (b) 4 5 -2 14 25 97,75 6 -3 12 95,9 7 -4 10 30 94,37

20 Variáveis Normalizadas Variáveis Externas Dimensões
DELINEAMENTO DE EXPERIMENTOS Tabela 4. Resultado do Central Gradient Design Method k x(k,0) Proc. u Variáveis Normalizadas Variáveis Externas Dimensões Custo Total (R$) b h fck - 18 58 20 100,8 1 (a) 16 99,23 2 -1 102,3 3 56 100,4 4 60 101,3 5 15 101,4 6 25 100,9 (b) 7 8 -2 14 97,69 9 -3 12 95,86 10 -4 94,38

21 Tabela 5. Comparativo entre os Delineamentos
DELINEAMENTO DE EXPERIMENTOS Tabela 5. Comparativo entre os Delineamentos b h Fck Função Objetivo (R$) Desvios Yj Y1j Y2j Y3j 1j2 2j2 3j2 1 20 60 25 102,9 102 102,5 0,08 69,9 18,3 102,8 102,7 0,09 1,85 0,61 -1 15 103,6 103,3 103 65,8 4,93 26,2 58 102,4 101,7 49,5 12,4 102,3 102,2 102,6 58,8 0,46 17,4 56 101,9 101,3 101,6 0,62 45,8 14,6 101,8 68,6 0,04 18,4 18 100,5 100,9 67,1 16,4 101,1 101,2 1,18 0,24 101,5 52,7 1,63 17,8 100,1 51 12,7 100,8 101,4 100,7 50,4 12,6 100,4 99,76 0,99 49,9 16,7 100,3 1,2 0,36 101 100,2 100,6 64,3 15,7 16 99,75 99,79 98,96 99,38 0,16 62,7 13,8 99,68 99,71 99,6 99,66 0,64 99,63 99,94 40,7 10,8 99,3 99,31 98,59 98,95 0,01 51,1 99,23 99,8 99,15 99,87 99,51 42,4 0,49 8,44 98,83 98,22 98,52 1,47 54,4 18,9 98,89 98,75 98,86 98,8 2 0,83 99,44 98,67 99,5 99,08 13,1

22 DELINEAMENTO DE EXPERIMENTOS
Aproximações Lineares: One-side Gradient Design I One-side Gradient Design II Central Gradient Design

23 DISCUSSÕES E CONCLUSÕES
Comparação Entre Delineamentos Experimentais Ajuste das funções obtidas pelos métodos Desvio Médio Quadrático Avaliação dos métodos Número de testes necessários. One-Side Gradient I e II: “n+1” coef. “n+1” testes. Central Gradient Design: “n+1” coef. “2n+1” testes. Precisão da aproximação

24 BIBLIOGRAFIA [1] Laranja, Roberto; Brito, Jorge, Verificação Probabilística da Segurança das Estruturas, Instituto Superior Técnico, Universidade Técnica de Lisboa. [2] Barbosa, Anderson; Freitas, Marcílio; Neves, Francisco; Confiabilidade Estrutural Utilizando o Método de Monte Carlo e Redes Neurais, Universidade Federal de Ouro Preto, 2004 [3] Cardoso, João; Almeida, João; Dias, José; Utilização do Método de Monte-Carlo em Fiabilidade de Estruturas, Centro de Investigação em Estruturas e Construção, 2003 [4] Krakovski, M. B. Optimization of RC Structures using Design of Experiments. Computers & Structures, Vol. 63, n 1, 1997.


Carregar ppt "CONFIABILIDADE E OTIMIZAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO"

Apresentações semelhantes


Anúncios Google