A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Geometria Espacial Prof.: Douglas 2 ano. POLIEDROS São sólidos limitados por 4 ou mais faces planas e poligonais. Ex:

Apresentações semelhantes


Apresentação em tema: "Geometria Espacial Prof.: Douglas 2 ano. POLIEDROS São sólidos limitados por 4 ou mais faces planas e poligonais. Ex:"— Transcrição da apresentação:

1 Geometria Espacial Prof.: Douglas 2 ano

2 POLIEDROS São sólidos limitados por 4 ou mais faces planas e poligonais. Ex:

3 Elementos de um poliedro Vértice (V), são os vértices dos polígonos Faces (F), são polígonos Arestas (A): são os lados do polígono

4 Poliedros convexos e não convexos Todo solido geométrico que satisfaz quatro condições é chamado de poliedro convexo. São elas: 1ª condição: a superfície do sólido é formada somente de partes planas, sendo essas parte (ou faces) polígonos convexos. 2ª condição: Duas faces nunca estão no mesmo plano. 3ª condição: Cada aresta está contida somente em duas faces. 4ª condição: O plano de cada face deixa o sólido todo no mesmo semi-espaço.

5 Convexo Não - Convexo De maneira geral: Um poliedro é convexo quando um segmento que liga dois de seus pontos está sempre contido nele. OBS: O estudo que será feito a partir daqui vai considerar apenas os poliedros convexos. Portanto, sempre que aparecer poliedro subentende que é convexo.

6 Nomenclatura A nomenclatura dos poliedros convexos pode ser feita de acordo com o número de faces (F) que eles possuem. Os principais poliedros convexos são: NOMEFACESNOMEFACES tetraedro4octaedro8 Pentaedro5decaedro10 hexaedro6Dodecaedro12 heptaedro7Icosaedro20

7 Relação de Euler O matemático suíço Leonhard Euler ( ) descobriu uma importante relação entre o número de vértices (V), o número de arestas (A) e o número de faces (F) de um polígono convexo. V – A + F = 2

8 Vejamos alguns exemplos: F = 6 V = 8 A = 12 V – A + F = 2 8 – = 2 F = 8 V = 12 A = 18 V – A + F = 2 12 – = 2

9 Soma dos ângulos da face de um poliedro A soma das medidas dos ângulos das faces de um poliedro convexo é dada por: S = (V – 2). 360 em que V é número de vértices do poliedro. Ex: Determine a soma dos ângulos das faces de um poliedro com 4 vértices.

10 Poliedros regulares Um poliedro convexo é regular quando todas as faces são regiões poligonais regulares e congruentes e em todos os vértices concorre o mesmo número de arestas. Poliedro Regular Poliedro Regular

11 Propriedade: existem apenas cinco poliedros regulares. São eles: tetraedro Cubo (Hexaedro)

12 octaedro dodecaedro Icosaedro

13 Exercício para casa - Pesquisar sobre Poliedros de Platão Data da entrega: 20/05/2010


Carregar ppt "Geometria Espacial Prof.: Douglas 2 ano. POLIEDROS São sólidos limitados por 4 ou mais faces planas e poligonais. Ex:"

Apresentações semelhantes


Anúncios Google