A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. Jorge Estudo dos Poliedros. Prof. Jorge Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento.

Apresentações semelhantes


Apresentação em tema: "Prof. Jorge Estudo dos Poliedros. Prof. Jorge Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento."— Transcrição da apresentação:

1 Prof. Jorge Estudo dos Poliedros

2 Prof. Jorge Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem o formato apresentado na figura. Outro dia, a piscina estava vazia. O funcionário do clube abriu o registro e começou a enchê-la. A água jorrava a uma vazão de 4 litros por segundo. 18 m x

3 Prof. Jorge Enchendo a piscina O gráfico a seguir mostra o nível x da água, em metros, na parte mais funda, em função do volume V de água despejada, em litros. V ( L) x (m) 0 C ,8 1,8 Qual é a profundidade da piscina na parte mais rasa? E na parte mais funda? Qual é a capacidade da piscina, em litros? Em quanto tempo a piscina ficará cheia?

4 Prof. Jorge Poliedro: uma forma muito especial Determinados sólidos tem uma forma muito particular. Observe os sólidos representados a seguir. A B C D E F M N P Q

5 Prof. Jorge Definição Os sólidos apresentados têm algumas característica comuns: São limitados por polígonos; Cada lado desses polígonos pertence a exatamente a dois dos polígonos; Dois desses polígonos nunca são coplanares. Todo sólido que obedece a essas condições é chamado de poliedro.

6 Prof. Jorge Elementos de um poliedro Alguns elementos de um poliedro recebem nomes especiais. Face de poliedro é cada um dos polígonos que o delimitam.

7 Prof. Jorge Elementos de um poliedro Alguns elementos de um poliedro recebem nomes especiais. Aresta de poliedro é cada um dos lados das faces. É cada quina do poliedro.

8 Prof. Jorge Elementos de um poliedro A B C D E F G H Alguns elementos de um poliedro recebem nomes especiais. Vértice de poliedro é cada um dos vértices das faces. É cada ponta do poliedro.

9 Prof. Jorge Elementos de um poliedro Alguns elementos de um poliedro recebem nomes especiais. O conjunto de todas as faces de um poliedro é chamado Superfície poliédrica. É a parte externa, visível. É a casca do poliedro.

10 Prof. Jorge Poliedro convexo e poliedro côncavo Observe os sólidos representados abaixo. A B C D E F Todo plano que contém qualquer de suas faces deixa todas as outras num mesmo semi-espaço. Dizemos, por isso, que eles são poliedros convexos.

11 Prof. Jorge Poliedro convexo e poliedro côncavo Observe agora o sólido representado abaixo. M N P Q O plano que contém a face MNPQ, por exemplo, deixa as faces do poliedro em semi-espaços diferentes. Dizemos, por isso, que ele é um poliedro côncavo.

12 Prof. Jorge Classificação dos poliedros Os poliedros recebem nomes especiais, de acordo com o numero n de suas faces (F). octaedro 8 icosaedro 20 heptaedro 7 dodecaedro 12 hexaedro 6 decaedro 10 pentaedro 5 eneaedro 9 tetraedro4 PoliedroF F

13 Prof. Jorge Veja alguns desses poliedros Hexaedro (P 1 ) Octaedro (P 2 ) Eneaedro (P 3 )Heptaedro (P 4 )

14 Prof. Jorge Relação de Euler Existe uma relação muito importante entre o número de faces (F), vértices (V) e arestas (A) de um poliedro convexo P4P P3P P2P P1P1 AFVPoliedro V + F – A = 2

15 Prof. Jorge Exemplos Um poliedro convexo tem 6 vértices e 12 arestas. Quantas faces tem? V + F – A = F – 12 = 2 F – 6 = 2 F = 8

16 Prof. Jorge Exemplos Um poliedro convexo tem 9 faces, sendo 7 quadran- gulares e 2 triangulares. Quantos são seus vértices? Primeiro vamos achar o número de arestas. 9 Faces 7 quadrang. 2 triang. A = 7.4 = 28 A = 2.3 = 6 2 A = 34 A = 17 V + F – A = 2 V + 9 – 17 = 2 V – 8 = 2 V = 10

17 Prof. Jorge Poliedros regulares Poliedro regular é todo poliedro em que: Todas as faces são polígonos regulares, congruentes entre si; De cada vértice, parte o mesmo número de arestas. Existem apenas cinco classes de poliedros regulares.

18 Prof. Jorge O prisma e suas formas

19 Prof. Jorge O prisma e suas formas Observe os objetos abaixo. Todos têm forma de poliedro, mas apresentam algumas características comuns. Eles estão associados a um tipo de poliedro muito especial: o prisma.

20 Prof. Jorge Definição Observe a animação. r O conjunto de todos esses segmentos é um sólido poliédrico chamado prisma.

21 Prof. Jorge Elementos principais do prisma O prisma tem dois tipos de faces A B C D E F A B C D EF bases (polígonos congruentes). faces laterais (paralelogramos). Superfície total do prisma é a união da superfície lateral com as duas bases do prisma.

22 Prof. Jorge Elementos principais do prisma O prisma tem dois tipos de arestas A B C D E F A B C D EF arestas das bases (AB, AB,..., FA, FA). arestas laterais (AA, BB, CC,...,FF ).

23 Prof. Jorge Elementos principais do prisma h A B C D E F A B C D EF A distância h entre as duas bases do prisma é a altura do prima.

24 Prof. Jorge Classificação dos prismas Um prisma é classificado pelo tipo de polígono que constitui suas bases. P. hexagonalhexágono P. pentagonalpentágono P. quadrangularquadrado P. triangulartriângulo PrismaPolígonos das bases

25 Prof. Jorge Veja alguns desses prismas Prisma triangular Prisma Pentagonal

26 Prof. Jorge Classificação dos prismas Um prisma pode ser classificado, também, pela posição das arestas laterais em relação ao plano da base. Dizemos que ele é: prisma reto, se as arestas laterais são perpendicu- lares aos planos das bases; prisma oblíquo, se as arestas laterais são oblíquas aos planos das bases. Nos prismas retos, as arestas laterais são alturas e as faces laterais são retângulos.

27 Prof. Jorge Classificação dos prismas Prisma triangular reto Prisma Pentagonal oblíquo h h

28 Prof. Jorge Prisma regular Todo prisma reto cujas bases são polígonos regulares é chamado de prisma regular. O prisma é reto e ABC é triângulo eqüilátero A B C Prisma triangular regular O prisma é reto e a Base é hexágono regular Prisma hexagonal regular

29 Prof. Jorge Prisma quadrangulares

30 Prof. Jorge Prismas quadrangulares Todo prisma cujas bases são paralelogramos é chamado paralelepípedo. Paralelepípedo

31 Prof. Jorge Prismas quadrangulares Se as bases de um paralelepípedo reto são retângulos, ele é chamado paralelepípedo reto- retângulo ou paralelepípedo retângulo. Paralelepípedo retângulo ou ortoedro

32 Prof. Jorge Prismas quadrangulares Se todas as arestas de um paralelepípedo retângulo são congruentes entre si, ele é chamado cubo ou hexaedro regular. Cubo ou hexaedro regular

33 Prof. Jorge Estudo do cubo

34 Prof. Jorge Estudo do cubo O cubo é o mais simples dos prismas. Ele é um prisma quadrangular regular, cujas faces são quadrados congruentes. Por isso qualquer de suas faces pode ser considerada como base. a medida de cada uma das arestas a a a

35 Prof. Jorge a a a Diagonais no cubo Num cubo, distinguimos dos tipos de diagonais. a medida de cada uma das arestas d D d diagonal da face D diagonal do cubo

36 Prof. Jorge Diagonais no cubo Obtendo os valores d e D em função da medida a da aresta. a a a d D a d 2 = a 2 + a 2 d = 2a 2 d = a 2

37 Prof. Jorge Diagonais no cubo Obtendo os valores d e D em função da medida a da aresta. a a a d D a D 2 = a 2 + d 2 D = a 2 + 2a 2 D = 3a 2 D = a 3

38 Prof. Jorge Área da superfície total do cubo Planificando a superfície total de um cubo de aresta a, obtemos a figura. a a a a a a a A T = 6a 2

39 Prof. Jorge Exemplo A área da superfície total de um cubo é 54 cm 2. Obter a medida da diagonal da face e da diagonal do cubo? A T = 6a 2 6 a 2 = 54 a 2 = 9 a = 3 d = a 2 d = 3 2 D = a 3 D = 3 3

40 Prof. Jorge O cubo como unidade de volume Se considerarmos a medida da aresta de um cubo como unidade de medida de comprimento, a medida do volume desse cubo é a unidade de volume. V = 1 u 3 1 u Definida a unidade de comprimento, a unidade de volume fica automaticamente definida.

41 Prof. Jorge O cubo como unidade de volume Se considerarmos a medida da aresta de um cubo como unidade de medida de comprimento, a medida do volume desse cubo é a unidade de volume. V = 1 u 3 1 u Se a unidade de comprimento é 1 m, a unidade de volume é 1 m 3. Se a unidade de comprimento é 1 dm, a unidade de volume é 1 dm 3.

42 Prof. Jorge Volume O volume de um sólido qualquer, numa certa unidade, é um número que indica quantas vezes o cubo de volume unitário cabe naquele sólido. Considerando o cubo da primeira figura como unidade de medida. Seu volume é 1 u 3. qual o volume dos sólidos abaixo? V = 1 u 3 V = 9 u 3 V = 11 u 3

43 Prof. Jorge Volume do cubo Analise as três figuras a seguir. a = 1 u V = 1 u 3 a = 2 ua = 3 u V = 2 3 = 8 u 3 V = 3 3 = 27 u 3 De uma maneira geral, o volume de um cubo cuja aresta mede a é V = a 3

44 Prof. Jorge Exemplo Uma diagonal de um cubo mede 6 m. Calcular a área da superfície total e o volume desse cubo? D = a3 a 3 = 6 a = 3 6 a = 2 3 m A T = 6a 2 A T = 6.(2 3) 2 A T = 72 m 2 V = a 3 V = (2 3) 3 V = 24 3 m 3

45 Prof. Jorge Estudo do Paralelepípedo retângulo

46 Prof. Jorge Estudo do paralelepípedo retângulo O paralelepípedo retângulo é um prisma quadrangular. Suas faces são duas a duas congruentes. a, b e c As dimensões do paralelepípedo. a c b Suas doze arestas são quatro a quatro congruen- tes. As medidas dessas arestas são as dimensões do paralelepípedo.

47 Prof. Jorge b a Diagonal do paralelepípedo Diagonal de um paralelepípedo é todo segmento cujos extremos são dois vértices não-pertencentes a uma mesma face. d diagonal da face inferior D diagonal do paralelepípedo c d D

48 Prof. Jorge b a Cálculo da diagonal do paralelepípedo Obtendo o valor de D em função das dimensões a, b e c do paralelepípedo. c D d 2 = a 2 + b 2 e D 2 = d 2 + c 2 d D 2 = a 2 + b 2 + c 2 D = a 2 + b 2 + c 2

49 Prof. Jorge Exemplo O comprimento e a largura de um paralelepípedo medem 12 cm e 4 cm. Uma de suas diagonais mede 13. Obter a medida de sua altura? D = a 2 + b 2 + c = c = c 2 c 2 = 169 – 160 c 2 = 9 c = 3

50 Prof. Jorge Área da superfície total do paralelepípedo Planificando a superfície total de um paralelepípedo de dimensões a, b e c obtemos a figura. a c b a b c ab ac bc A T = 2ab + 2ac + 2bc A T = 2(ab + ac + bc)

51 Prof. Jorge Exemplo A área da superfície total de um paralelepípedo é 248 cm 2. suas dimensões são proporcionais a 2, 3 e 5. Calcular a medida da diagonal do paralelepípedo? As dimensões a, b e c são proporcionais a 2, 3 e 5 indica que a = 2k, b = 3k e c = 5k. A T = 248 2(ab + ac + bc) = 248 ab + ac + bc = 124 :(2) 2k.3k + 2k.5k + 3k.5k = 124 6k k k 2 = k 2 = 124 k 2 = 4 k = 2

52 Prof. Jorge Exemplo A área da superfície total de um paralelepípedo é 248 cm 2. suas dimensões são proporcionais a 2, 3 e 5. Calcular a medida da diagonal do paralelepípedo? Logo a = 4, b = 6 e c = 10. D = D = D = 152 D = 2 38

53 Prof. Jorge Volume do paralelepípedo retângulo Analise as duas figuras a seguir. cubo unitário V = 1 u 3 V = = 60 u 3 5 u 3 u 4 u De modo geral, o volume de um paralelepípedo de dimensões a, b e c é dado por V = a.b.c

54 Prof. Jorge Observação Podemos interpretar o volume de um paralelepípedo retângulo de outra forma. Veja a figura a seguir. V = abc V = A B.h a b c A = ab = (ab)c= (área da base). (altura relativa)

55 Prof. Jorge Exemplos Uma caixa dágua tem forma de paralelepípedo retângulo. Suas dimensões internas são 1,2 m, 2,5 m e 0,8 m. Obter sua capacidade, em litros? A capacidade de uma caixa é o volume de água que cabe nela. V = abc = 1,2. 2,5. 0,8= 2,4 m 3 Sabemos que 1 m 3 = dm 3 e que 1 L = 1 dm 3. V = dm 3 = L

56 Prof. Jorge Exemplos Uma das dimensões de um paralelepípedo é aumentada em 20%; outra, aumentada em 30%; a terceira em 10%. O que ocorre com o volume do paralelepípedo? Suponhamos que as dimensões sejam x, y e z. Então, o volume original é V = xyz. Se x aumenta 20%, a nova dimensão passa para 1,2 x. Se y aumenta 30%, a nova dimensão passa para 1,3 y. Se z aumenta 10%, a nova dimensão passa para 1,1 z. V = 1,2x. 1,3 y. 1,1 z = 1,404.xyz = 1,404.V Concluímos que o volume aumenta 40,4%.

57 Prof. Jorge Estudo geral do prisma

58 Prof. Jorge Estudo geral do prisma Vamos aprender a calcular áreas e volumes em prismas quaisquer. Em geral. Vamos considerar prismas retos em que As arestas laterais são alturas; As faces laterais são retângulos; A B C

59 Prof. Jorge Áreas no prisma No prisma as áreas. Área Lateral (A L ) – Soma das áreas dos retângulos; Área da base (A B ) – Área do polígono da base; Área total (A T ) – Soma da área lateral com as bases A T = A L + 2A B

60 Prof. Jorge Exemplo A figura a seguir mostra um prisma triangular reto, com as dimensões indicadas. Calcular a área lateral e a área total desse prisma A L = A L = = 72 A B = (3.4)/2= 6 A T = A L + 2.A B A T = = 84

61 Prof. Jorge Exemplo Num prisma hexagonal regular, a altura mede 8 m e a área de cada base é 243 m 2. Achar sua área lateral. x 6 A = x 2 3 = 24 3 x 2 = 16 x = 4 A f = b.h A f = 4.6 = 24 A L = 6.A f A L = 6.24 = 192 m 2

62 Prof. Jorge Princípio de Cavalieri

63 Prof. Jorge Princípio de Cavalieri Bonaventura Cavalieri nasceu na Itália, no final do século XVI. Discípulo de Galileu, ele deixou contribuições importantes nas áreas de óptica e geometria.

64 Prof. Jorge Princípio de Cavalieri Dados dois ou mais sólidos apoiados em um mesmo plano, se Todos têm a mesma altura; Todo plano paralelo a e que corte os sólidos determina, em todos eles, seções planas de mesma área; Então os sólidos têm o mesmo volume.

65 Prof. Jorge Princípio de Cavalieri A figura abaixo ilustra o princípio de Cavalieri.

66 Prof. Jorge Volume do prisma Vamos deduzir uma fórmula para o cálculo do volume do prisma. Para isso, vamos aplicar o princípio de Cavalieri. V = A B.h

67 Prof. Jorge h 60º Exemplos As bases de um prisma oblíquo são retângulos cujos lados medem 5 cm e 4 cm. Suas arestas laterais medem 6 cm e formam, com o plano da base, ângulo de 60º. Achar o volume do prisma

68 Prof. Jorge Exemplos O volume de um prisma hexagonal regular é igual a 486 cm 3, e sua altura é igual ao apótema da base. Calcular sua área total. L h


Carregar ppt "Prof. Jorge Estudo dos Poliedros. Prof. Jorge Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento."

Apresentações semelhantes


Anúncios Google