A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

“APLICAÇÃO DE TESTES ALEATORIZADOS A DADOS BIOQUÍMICOS” LUANA FILÓ VANESSA PANKIW Profº orientador: Fernando Lucambio Trabalho de conclusão do curso de.

Apresentações semelhantes


Apresentação em tema: "“APLICAÇÃO DE TESTES ALEATORIZADOS A DADOS BIOQUÍMICOS” LUANA FILÓ VANESSA PANKIW Profº orientador: Fernando Lucambio Trabalho de conclusão do curso de."— Transcrição da apresentação:

1 “APLICAÇÃO DE TESTES ALEATORIZADOS A DADOS BIOQUÍMICOS” LUANA FILÓ VANESSA PANKIW Profº orientador: Fernando Lucambio Trabalho de conclusão do curso de Estatística – UFPR Curitiba, 29 de novembro de 2006

2 Objetivo Descrição do Experimento Materiais e Métodos Análise Descritiva Modelo Matemático RESUMO Estatística Paramétrica Não Paramétrica: - Kruskal-Wallis - Testes Permutacionais Conclusão Bibliografia

3 Estudar os Testes Permutacionais como alternativa às técnicas paramétricas e não paramétricas de análise de dados, utilizando dados referentes a uma medida de hidratação córnea, através do pacote “coin” na linguagem de programação R. OBJETIVO

4 Corneometria (variável resposta): é um método elétrico não invasivo que quantifica a hidratação da pele, baseando-se em uma medida de capacitância (diferença da constante dielétrica entre duas placas condutoras paralelas), com escala entre u.m.. DESCRIÇÃO DO EXPERIMENTO

5 As medidas foram feitas em ambiente experimental controlado, com umidade relativa do ar entre 40% e 50% e temperatura entre 20°C e 22°C; Os voluntários ficam em climatização durante 20 à 30 minutos, com região de teste exposta. E cada subdivisão denomina-se campo. DESCRIÇÃO DO EXPERIMENTO

6 Utilizou-se as leituras de corneometria de quatro testes, realizados em dias diferentes e identificados como Ef 120, Ef 175, Ef 321 e Ef 463; Cada teste tem de 9 à 11 voluntários, totalizando 38 com idades entre 19 e 60 anos; Foi comparado os resultados da análise paramétrica e não paramétrica (Kruskal-Wallis e Teste Permutacional). MATERIAL E MÉTODO

7 Boxplot das medidas de corneometria por teste: ANÁLISE DESCRITIVA

8 Interação entre Campo e Teste:

9 MODELO MATEMÁTICO α = intercepto δ ij = efeito do campo “i” dentro do teste “j”; com i = 1, 2, 3, 4, 5 e 6; j = 1, 2, 3 e 4 ε ijk = erro aleatório não controlável; ε ijk ~ N(0, σ²) k=1,..., r, sendo r o número de indivíduos por teste. Hipótese nula: H o: µ 1j = µ 2j = µ 3j = µ 4j = µ 5j = µ 6j *Onde µ ij são as médias teóricas de cada campo dentro de cada teste, sendo µ ij = α + δ ij Y ijk = α + δ ij + ε ijk

10 ANÁLISE PARAMÉTRICA ANOVA do Campo dentro de cada Teste: Análise de Resíduos: * Indicativo de existência de diferença significativa dos campos nos diferentes testes observados.

11 ANÁLISE PARAMÉTRICA Testes DfSum SqMean SqF valuep-valor 120 Campo Resíduos Campo Resíduos Campo Resíduos Campo Resíduos ANOVA de cada Teste: * Simulou-se o resultado que seria obtido caso tivéssemos disponível para a avaliação de diferença entre os campos de tratamento apenas um dos quatro testes.

12 ANÁLISE NÃO PARAMÉTRICA Kruscal-Wallis: K = nº de amostras; n j = nº de elementos da amostra j; N = total de observações do conjunto das k amostras; R j = soma dos postos da amostra j. Resultado de Kruskal-Wallis, estratificado por Teste :

13 ANÁLISE NÃO PARAMÉTRICA Testes Permutacionais: Sugerida por Fisher em meados de 1930; Determinar a distribuição de referência dos testes estatísticos, utilizando permutação das observações ao invés de assumir que os dados provém de uma determinada distribuição de probabilidade; Em 1999, Strasser e Weber sugeriram a estatística:

14 TESTES PERMUTACIONAIS Resultado do Oneway-Test, estratificado por Teste:

15 CONCLUSÃO Os Testes Permutacionais são de fácil operacionalização dentro do pacote coin; Os resultados dos testes paramétricos e não paramétricos equivalentes, a princípio são contraditórios. Porém, a análise paramétrica (geral e específica por teste) é não conclusiva, logo escolhemos os resultados dos testes não paramétricos. O valor da corneometria nos diferentes Campos (A, B, C, D, E e F) não diferem de forma significativa, independentemente do Teste.

16 CONCLUSÃO Médias ajustadas por Teste para os dados de corneometria:

17 BIBLIOGRAFIA STRASSER. H., WEBER C., On the Asymptotic Theory of Permutation Statistics, (1999). HORNIK K., HORTHON T., ZEILEIS A., A Computational Framework for Conditional Inference with an Application to Unbiased Recursive Partitioning, (2005). HORNIK K., HORTHON T., Conditional Inference Procedures in a Permutation Test Framework, (2006). CAMPOS H., Estatística experimental não paramétrica, 3ª ed. Piracicaba. Departamento de Matemática e Estatística, Universidade de São Paulo, (1979). SCHEFFÉ H., The analysis of variance, John Wiley & Suns, (1959).

18 ANEXOS S= número de permutações dos valores de y:

19 ANEXOS Estatística de teste:


Carregar ppt "“APLICAÇÃO DE TESTES ALEATORIZADOS A DADOS BIOQUÍMICOS” LUANA FILÓ VANESSA PANKIW Profº orientador: Fernando Lucambio Trabalho de conclusão do curso de."

Apresentações semelhantes


Anúncios Google