A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

A Estatística é um ramos da Matemática que dispõe de processos apropriados para recolher, organizar, classificar, apresentar e interpretar determinados.

Apresentações semelhantes


Apresentação em tema: "A Estatística é um ramos da Matemática que dispõe de processos apropriados para recolher, organizar, classificar, apresentar e interpretar determinados."— Transcrição da apresentação:

1 A Estatística é um ramos da Matemática que dispõe de processos apropriados para recolher, organizar, classificar, apresentar e interpretar determinados conjuntos de dados.

2 População é o conjunto de todos os elementos que estão a ser estudados (pessoas, instituições, animais, objectos, acontecimentos, etc…). Ao número de elementos da população, chama-se efectivo da população. Exemplos: Temperatura Pressão Atmosférica Alunos de uma escola População de um país ou de um distrito

3 Recenseamento é um estudo estatístico que abrange todos os elementos da população. Sondagem é a observação de apenas alguns elementos da população. Os elementos observados constituem a amostra. As razões que levam à utilização de uma amostra e não da população: - a população ser demasiado grande; - economia de dinheiro; - economia de tempo; - comodidade.

4 Amostra é o subconjunto finito da população que foi observado no estudo estatístico. A dimensão da amostra é o número de elementos da amostra.

5 Os dados estatísticos nem sempre são da mesma natureza. É diferente estudar a cor dos olhos ou a cor do cabelo do que fazer o estudo sobre a altura ou o número de pessoas de um agregado familiar. As primeiras duas variáveis (cor dos olhos e cor do cabelo) são expressas através de uma qualidade, categoria ou característica, não susceptível de medida, mas de classificação. São chamados dados qualitativos. As outras duas variáveis (altura e número de pessoas do agregado familiar) representam informação resultante de características susceptíveis de serem medidas. São chamados dados quantitativos. Os dados quantitativos podem ser de natureza discreta ou contínua. O número de pessoas de um agregado familiar é expresso através de um número inteiro (diz-se que a variável é quantitativa Discreta), enquanto que a Altura pode admitir qualquer valor decimal (diz-se que a variável é quantitativa Continua). Tipos de Dados

6 Quantitativa – Quando se exprime por um número (Ex: Idade, Altura, preço, Altitude) Variável Qualitativa – Quando não se exprime por um número (Ex: Nacionalidade, sexo, cor, etc.) Dado estatístico é cada um dos valores (numéricos ou qualitativos) observados em cada elemento da população. Tipos de Dados

7 Moda é o valor da variável a que corresponde a maior frequência. Uma distribuição pode ter mais que uma moda. Média é o quociente entre a soma de todos os valores observados e o número de elementos da amostra. Medidas de localização central

8 Exemplo: O número de pessoas de um agregado familiar é expresso através de um número inteiro, por exemplo: 1, 5, 6, 3, 3, 4, 2, 3, 6, 3, 2, 5 Moda é 3 (valor que se repete mais vezes) Média é calculada por ( )/12 = =3,58 Medidas de localização central

9 A mediana (Med) é o valor que ocupa a posição central quando se ordenam os dados estatísticos. Quando o número de dados N é impar, há um dado estatístico que está exactamente a meio, ocupando a posição (N+1)/2. Quando o número de dados N é par, nenhum dado está no meio. Considera-se então os dois valores centrais, nas posições N e N + 1 sendo a mediana a média destes dois valores. Medidas de localização central

10 - Gráfico circular - Gráfico de Barras -- Histograma

11 Gráfico circular é representado por um círculo que está dividido em sectores (desenhados por raios) cujas amplitudes são proporcionais à frequência correspondente. O gráfico circular costuma utilizar-se quando o número de categorias para a variável é pequeno (normalmente menor ou igual a 6). Nos gráficos circulares tem de se ter em atenção que: - o gráfico deve ter um título; - A área de cada sector é proporcional à frequência; - a legenda pode ser inscrita no interior de cada sector assim como a percentagem; - Normalmente,utiliza-se uma cor para cada um dos sectores Gráfico Circular

12 Clube Freq. Abs. Freq. Rel. Ângulo FCP100,280,28x360=100º SCP100,280,28x360=100º SLB120,330,33x360=120º BFC40,110,11x360=40º Totais 361,00360º Exemplo: - O ângulo de cada sector pode-se obter multiplicando a frequência relativa e 360º Gráfico Circular

13 - o eixo horizontal assinala os valores possíveis da Característica; - no eixo vertical as frequências absolutas; - por cima das marcas dos pontos do eixo horizontal traçam-se barras ou linhas verticais com altura directamente proporcional à frequência absoluta. Idade Freq. Abs. Freq. Rel. 1120, , , , ,05 Totais201,00 Gráfico de Barras

14 Organização e representação de dados Dados Qualitativos Relativamente a uma amostra de 20 portugueses, com mais de 18 anos, obtiveram-se os seguintes dados relativos ao seu estado civil. Solteiro Solteiro Casado Solteiro Solteiro Divorciado Solteiro Viúvo Casado Divorciado Solteiro Casado Solteiro Solteiro Casado Casado Solteiro Solteiro Casado Divorciado Solteiro Casado Casado Solteiro Viúvo

15 Organização e representação de dados Dados Qualitativos Estado Cívil (Valores da variável estatística) N.º de pessoas (Frequência absoluta) % de pessoas (Frequência relativa) Solteiro12 12/25 x 100 = 48% Casado8 8/25 x 100 = 32% Viúvo2 2/25 x 100 = 8 % Divorciado3 3/25 x 100 = 12% Total251 ou 100 % 1.º deve-se proceder à organização dos dados através da construção de uma tabela de frequências: A soma das frequências absolutas corresponde à dimensão da amostra. A soma das frequências relativas corresponde a 1 ou a 100% (caso de traduza em percentagem)

16 Organização e representação de dados Dados Qualitativos Como as variáveis qualitativas não tomam valores numéricos não existe a possibilidade de se determinar a média ou a mediana. No entanto, pode determinar-se a moda da distribuição. No exemplo, a moda corresponde ao estado cívil Solteiro, uma vez que é a característica (valor da variável qualitativa) que se repete com maior frequência.

17 Organização e representação de dados Dados Qualitativos As variáveis qualitativas podem ser representadas recorrendo a gráficos de barras e gráficos circulares.

18 Organização e representação de dados Dados Quantitativos Discretos Numa escola recolheram-se as respostas de 135 alunos (amostra) quanto ao seu número de irmãos (variável quantitativa), tendo-se obtido os seguintes resultados: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5

19 Ano Lectivo 2008/2009 Matemática Organização e representação de dados Dados Quantitativos Discretos N.º de irmãosN.º de alunos% de alunos 06044,5% 14029,6% 22014,8% 3107,4% 432,2% 521,5% Total % A tabela de frequências :

20 Organização e representação de dados Dados Quantitativos Discretos N.º de irmãos N.º de alunos % de alunos 06044,5% 14029,6% 22014,8% 3107,4% 432,2% 521,5% Total % Neste caso, como se trata de uma variável quantitativa, é possível determinar além da moda que é 0 (o número de irmãos que mais se repete), a média e a mediana. Mediana é o valor central, ou seja, o valor que ocupa a posição 68: 1 Média: 60 x x x x x x = 132/135 = 0,98

21 Organização e representação de dados Dados Quantitativos Discretos Estes dados podem ser apresentados através de um gráfico de barras ou um gráfico circular:

22 Organização e representação de dados Dados Quantitativos Contínuos 5045,252,467, , ,659, ,35648,25251,35662,258 Para efectuarmos um estudo sobre o peso dos alunos do 3.º ciclo da escola, escolheu-se uma amostra aleatória constituída por 30 alunos. Os dados obtidos, em Kg, foram os seguintes:

23 Organização e representação de dados Dados Quantitativos Contínuos Como se trata de uma variável quantitativa contínua, isto significa que os dados obtidos terão que ser organizados por classes ou intervalos de valores. Para tal deve-se proceder da seguinte forma: Valor máximo – valor mínimo = 69 – 45 = 24 (Amplitude dos valores) Determinar o número de classes de forma que não sejam poucas ou demasiadas, evitando assim, a concentração dos dados ou a dispersão excessiva. Podes considerar a equação 2 k n, sendo n o número de observações (30) e k o número de classes. Assim, facilmente se verifica que para k = 5, se obtém 32 > 30. Considere-se 5 classes, sendo amplitude de cada classe dada por 24/5 5

24 Organização e representação de dados Dados Quantitativos Contínuos Para organizar os dados numa tabela de frequências considera-se o procedimento já realizado: Valor mínimo: 45 Amplitude do intervalo: = 50, obtendo-se o intervalo de valores [45; 50[ = 55, obtendo-se o intervalo de valores [50; 55[ = 60, obtendo-se o intervalo de valores [55; 60[ = 65, obtendo-se o intervalo de valores [60; 65[ = 70, obtendo-se o intervalo de valores [65; 70] O último intervalo é fechado à direita ], incluindo o último valor. Nota: Ao limite inferior de cada classe, soma-se a amplitude da classe de modo a se determinar o respectivo limite superior.

25 Organização e representação de dados Dados Quantitativos Contínuos Classes (Peso dos alunos) N.º de alunos% de alunos [45, 50[310% [50, 55[620% [55, 60[930% [60, 65[723,3% [65, 70]516,7% Total30100 % Tabela de frequências:

26 Organização e representação de dados Dados Quantitativos Contínuos Classes (Peso dos alunos) N.º de alunos % de alunos [45, 50[310% [50, 55[620% [55, 60[930% [60, 65[723,3% [65, 70]516,7% Total30100 % Pela observação da tabela, é possível verificar que existe uma classe que apresenta um valor mais elevado de alunos. Essa classe designa-se por classe modal. Neste exemplo é a classe [55; 60[.

27 Organização e representação de dados Dados Quantitativos Contínuos Os dados desta variável, por ser contínua, devem ser representados por um gráfico que têm um aspecto diferente dos gráficos de barras das variáveis de dados discretos. Neste caso chamam-se histogramas. Repara que num histograma as barras são contíguas, ou seja, são unidas umas às outras. Esta é uma consequência dos valores serem representados no eixo horizontal como na recta real, atendendo à sua continuidade.

28 Organização e representação de dados Dados Quantitativos Contínuos É também usual traçar-se uma linha que une os pontos médios das barras do histograma. À região limitada por essa linha chama-se polígono de frequências.


Carregar ppt "A Estatística é um ramos da Matemática que dispõe de processos apropriados para recolher, organizar, classificar, apresentar e interpretar determinados."

Apresentações semelhantes


Anúncios Google