A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Conversão de bases binário decimal – decimal binário Tecnologia da Informação Curso de Administração Prof a Úrsula Lisbôa Fernandes Ribeiro.

Apresentações semelhantes


Apresentação em tema: "Conversão de bases binário decimal – decimal binário Tecnologia da Informação Curso de Administração Prof a Úrsula Lisbôa Fernandes Ribeiro."— Transcrição da apresentação:

1 Conversão de bases binário decimal – decimal binário Tecnologia da Informação Curso de Administração Prof a Úrsula Lisbôa Fernandes Ribeiro

2 Sistemas existentes As pessoas trabalham com o sistema decimal Para o computador, este sistema não é muito prático, visto que os dados precisam ser interpretados usando-se o estado da corrente elétrica (ligada/desligada) Para resolver este impasse foi criado o sistema de numeração binária, que usa os dígitos ZERO e UM em sua representação, os quais correspondem a desligado e ligado, respectivamente.

3 Sistemas de numeração É o conjunto de símbolos utilizados para representação de quantidades e as regras que definem a forma de representação. É determinado fundamentalmente pela Base: indica o nº de símbolos utilizados Tipos de sistemas existentes: Posicionais e não posicionais

4 Sistemas não posicionais São aqueles em que o valor atribuído a um símbolo não se altera, independente da posição em que ele se encontra no conjunto de símbolos que está representando uma quantidade Exemplo: XXXVII (37 em romano) No número romano, cada um dos X vale 10, independentemente de sua posição. O mesmo acontece com o V e com o I.

5 Sistemas posicionais São aqueles em que o valor atribuído a um símbolo depende da posição em que ele se encontra no conjunto de símbolos que representa uma quantidade. O valor total do número é a soma dos valores relativos de cada algarismo (decimal). 735= = O algarismo 5 representa 5 unidades, o algarismo 3 representa 3 dezenas, e por último que o algarismo 7 representa 7 centenas … Já no 2º exemplo é diferente

6 Teorema fundamental da numeração O teorema fundamental da numeração diz que o valor decimal de uma quantidade expressa em outro sistema de numeração é dado pela seguinte fórmula: Onde: i = posição em relação à vírgula, d = nº de dígitos à esquerda da vírgula, n = nº de dígitos à direita da vírgula –1, dígito = cada um dos que compõem o número. XXXXX … + X 3 × b 3 + X 2 × b 2 + X 1 × b 1 + X 0 × b 0 + X -1 × b -1 +… Detalhando a fórmula:

7 Exemplos Octal para decimal: 764 (8) = 7 x x x 8 0 = = 500 (10) Então, utilizando o teorema, podemos realizar a transformação de um número numa base qualquer para a base decimal (b=10): basta colocá-lo na forma polinomial e calculá-lo. O sistema binário é um sistema de numeração posicional em que todas as quantidades são representadas utilizando como base o número dois, dispondo dos algarismos : dois zero (0) e um (1) Então a conversão binário para decimal segue a idéia já apresentada. Exemplo: (2) = 1 x x x x x x 2 0 = = 43 (10)

8 Conversão decimal p/ binário Parte inteira: Divide-se sucessivamente por 2 o número decimal e os quocientes que vão sendo obtidos até que o quociente seja 0 ou 1 O número binário é então obtido pela sequencia de todos os restos obtidos dispostos na ordem inversa 10 (10) = 1010 (2)

9 Conversão decimal p/ binário Parte fracionária: Utiliza-se o método das multiplicações sucessivas que consiste em: –Multiplicar o n o fracionário por 2 –Deste resultado, a parte inteira será utilizado como dígito do n o na base 2 e a parte fracionária é novamente multiplicada por 2. O processo é repetido até que a parte fracionária do último produto seja igual a 0 (zero) Exemplo: x 2 = x 2 = x 2 = x 2 = Resultado: (10) = (2) E se o no tiver parte inteira fracionária ? Utilizar ambos os métodos e depois juntar os valores encontrados


Carregar ppt "Conversão de bases binário decimal – decimal binário Tecnologia da Informação Curso de Administração Prof a Úrsula Lisbôa Fernandes Ribeiro."

Apresentações semelhantes


Anúncios Google