A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Ambiente de simulação Os algoritmos previamente discutidos foram analisados usando um simulador de mobilidade. Ele modela uma cidade de 20 Km de raio,

Apresentações semelhantes


Apresentação em tema: "Ambiente de simulação Os algoritmos previamente discutidos foram analisados usando um simulador de mobilidade. Ele modela uma cidade de 20 Km de raio,"— Transcrição da apresentação:

1 Ambiente de simulação Os algoritmos previamente discutidos foram analisados usando um simulador de mobilidade. Ele modela uma cidade de 20 Km de raio, dividindo-a em áreas baseadas na densidade populacional e limites naturais.

2 Ambiente de simulação Servidores fixos

3 Ambiente de simulação O ambiente modelado inclui também os diferentes lugares da cidade onde as pessoas gastam o seu tempo. O gráfico ao lado mostra a frequência dos pontos com maior movimentação nas diversas áreas da cidade.

4 Ambiente de simulação Os usuários são divididos em quatro grupos de acordo com sua mobilidade e características de demanda. – a )5% de usuários que se movem frequentemente por longas áreas da cidade. – b )60% de trabalhadores que permanecem em somente um lugar uma grande parcela do dia, e depois retornam para sua residência. – c )30% de usuários que se movem por toda a cidade, gastando tempo considerável em cada local. – d )5% de usuários tem alta mobilidade, mas restritos ao centro da cidade. Uma tabela de movimento é associado a cada usuário para determinar seu comportamento de mobilidade típico.

5 Ambiente de simulação No simulador os tempos entre chamadas por usuário seguem uma distribuição de Poisson com médias de 14,7,18 e 18 para os grupos a,b,c e d respectivamente. Uma vez conectado, o usuário solicita um número de requisições numa taxa de uma requisição por segundo. Dentro de cada grupo, a popularidade de conteúdo segue uma distribuição zip-like onde a probabilidade de requisitar o objeto de um conteúdo c é igual a K/(c^alfa), onde K é parâmetro de normalização e alfa é igual a 0,84.

6 Avaliação de Performance

7 Todos os conteúdos tem tamanho homogêneo e o mesmo servidor de origem. A distância entre os servidores é usada como fator multiplicador no cálculo de tráfego entre eles. Para os experimentos a configuração foi: –Número de conteúdos igual a 24. –Número de usuários móveis igual , gerando uma média de requisições por segundo na rede. –O período de reconfiguração foi ajustado para 10 minutos e a simulação rodou por 80 períodos. –Os parâmetros alfa e delta do método de previsão de demanda foram configurados para 0,2 e 7 respectivamente e o parâmetro HW foi configurado para 1000 requisições por período.

8 Impacto da replicação, serviço indireto e tamanho do conteúdo de manutenção Foram analisados os impactos referentes aos parâmetros sr^c(replicação), si^c(serviço indireto) e (sm^c)manutenção. Esses parâmetros foram inicialmente configurados para sr^c = si^c = sm^c = 1 Kbyte, para todo conteúdo pertencente ao conjunto C.

9 1º Avaliação: Altera sr^c e mantêm os outros parâmetros constantes. Impacto da replicação, serviço indireto...

10 Resultado : O algoritmo online teve o tráfego só 2x maior em relação ao algoritmo ótimo. O algoritmo online teve o tráfego 85% menor que o algoritmo ACDN. O algoritmo online teve uma economia de tráfego de 97% em relação ao melhor algoritmo estático. Conclusão : Esses resultados parecem indicar, que se basear nas demandas futuras nos dá um ganho maior que se basear nas observações do passado. Impacto da replicação, serviço indireto...

11 2º Avaliação: Altera sm^c, atribui ao sr^c o valor de vezes o valor inicial e mantêm si^c constante. Impacto da replicação, serviço indireto...

12 Resultado : O algoritmo online teve o tráfego 11% maior em relação ao algoritmo ótimo. O algoritmo online teve o tráfego 84% menor que o algoritmo ACDN. Conclusão : Com o aumento do tamanho de manutenção torna-se menos vantajoso manter uma réplica onde há baixas demandas de cliente. Impacto da replicação, serviço indireto...

13 3º Avaliação: Altera si^c, atribui ao sr^c e ao sm^ c valor de vezes o valor inicial. Impacto da replicação, serviço indireto...

14 Resultado: O algoritmo online teve o tráfego 2,7 vezes maior em relação ao algoritmo ótimo. O algoritmo online teve o tráfego de 34% até 65% menor que o algoritmo ACDN quando o tamanho do serviço indireto aumentou de 10 até os valores iniciais. Conclusão: Quando os tamanho associado ao serviço indireto aumenta torna-se mais vantajoso replicar conteúdo do que encaminha requisições para outros servidores. Impacto da replicação, serviço indireto...

15 Impacto do número de usuários móveis. Assumindo que todos os parâmetros de tamanho sejam iguais 10 Kbytes.

16 Resultado: O algoritmo online teve o tráfego 52% maior em relação ao algoritmo ótimo. Em comparação o ACDN resultou num tráfego 126% maior que a solução ótima. Conclusão: Como esperado, os algoritmos dinâmicos escalam muito melhor do que as abordagens estáticas. Impacto do número de usuários móveis.

17 Overhead das operações de gerenciamento. As operações de replicação e manutenção de conteúdo geram um overhead no tráfego total gerado em uma rede de distribuição de conteúdo. Se o overhead, em contra-partida, reduz o tráfego em relação as respostas indiretas, esse gerenciamento torna-se vantajoso.

18 Assumindo uma configuração de unidades móveis e as mesmas configurações de tamanho do último exemplo. Overhead das operações de gerenciamento.

19 Resultado: O algoritmo online teve a mesmo overhead de gerenciamento, mas o tráfego total é 37% maior que a solução ótima. O ACDN gera um overhead e um tráfego maior que o algoritmo online. Conclusão: As abordagens dinâmicas geram um overhead significativo no tráfego total. Overhead das operações de gerenciamento.

20 Sobrecarga de servidor O limite superior é flexível. Isso ocorre porque são aplicadas estimativas futuras de carga. Se a estimativa não é correta, ainda pode ocorrer sobrecarga nos servidores.

21 Sobrecarga de servidor Os parâmetros são os mesmos usados no tópico anterior.

22 Sobrecarga de servidor Resultado: O número de servidores sobrecarregados no algoritmo online é significativamente menor do que no ACDN. Conclusão: O método de previsão de demanda de alta precisão faz o algoritmo online mais competitivo do que o ACDN.

23 Impacto da previsão de demanda Foi avaliado a sensitividade do algoritmo aos parâmetros alfa e delta. A avaliação ocorreu em dois cenários diferentes. Um com o método DES para previsão demanda e outro usando o perfeito conhecimento da demanda futura. O melhor valor de alfa de depende da variação observada na demanda. Se as requisições de clientes são razoavelmente estáveis uma valor perto de 0 é um bom valor. Com demandas que diminuem e aumentam gradualmente, uma valor perto de 1 é mais adequado.

24 Impacto da previsão de demanda Avaliando alfa e beta no método DES. Configuração utilizada: Número de usuários : sm^c: 500KB sr^c: 10MB si^c: 20KB Obs: No ambiente simulado a demanda de cliente varia suavemente.

25 Impacto da previsão de demanda Aqui analisamos o impacto do parâmetro alfa. Conclusão: Como a demanda varia suavemente, um valor para alfa perto de 0 é mais adequado.

26 Impacto da previsão de demanda Aqui analisamos o impacto do parâmetro delta. Conclusão: O melhor resultado obtido no ambiente foi com delta igual a 2. Quando 2 < delta < 20 o algoritmo online produz resultados dentro de 5% da solução ótima.

27 Impacto da previsão de demanda DES X Previsão perfeita Número de usuários : sm^c: 2M sr^c: 10MB si^c: 20KB

28 Impacto da previsão de demanda Conclusão: O método de previsão perfeita reduz o tráfego sé em 10% em relação ao método DES. Logo o método utilizado tem boa acurácia.


Carregar ppt "Ambiente de simulação Os algoritmos previamente discutidos foram analisados usando um simulador de mobilidade. Ele modela uma cidade de 20 Km de raio,"

Apresentações semelhantes


Anúncios Google