A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Estatística: Aplicação ao Sensoriamento Remoto ANO 2010 Camilo Daleles Rennó

Apresentações semelhantes


Apresentação em tema: "Estatística: Aplicação ao Sensoriamento Remoto ANO 2010 Camilo Daleles Rennó"— Transcrição da apresentação:

1 Estatística: Aplicação ao Sensoriamento Remoto ANO 2010 Camilo Daleles Rennó

2 Amostragem Problema: quanto pesa, em média, uma folha de eucalipto? Amostragem ou Censo? Por que fazer amostragem? população infinita diminuir custo aumentar velocidade na caracterização (medidas que variam no tempo) aumentar a representatividade melhorar a precisão (mais cuidado na obtenção dos dados) minimizar perdas por medidas destrutivas Por que fazer censo? população pequena ou amostragem muito grande em relação a população precisão completa (não se permite erros) a observação já é completa 1 kg? 1 g? 1 g quantas folhas tem, em média, um eucalipto?2? 1.000? ?

3 Amostragem Quanto amostrar? depende: da variabilidade original dos dados (maior variância maior n) da precisão requerida no trabalho (maior precisão maior n) do tempo disponível (menor o tempo menor n) do custo da amostragem (maior o custo menor n) Como amostrar? amostragem probabilística X não probabilística Problema: quanto pesa, em média, uma folha de eucalipto? 1 kg? 1 g? 1 g quantas folhas tem, em média, um eucalipto?2? 1.000? ?

4 Amostragem Probabilística e Não Probabilística Amostragem probabilística: cada elemento da população tem uma probabilidade (não nula) de ser escolhido Amostragem não probabilística: amostragem restrita aos elementos que se tem acesso (ex: drogados) escolha a esmo (ex: coelhos numa gaiola, escolha de parafusos numa caixa) impossibilidade de sorteio (ex: sangue) amostragem intencional, sem sorteio (ex: escolha de elementos típicos) voluntários (ex: testes de vacina)

5 Amostragem Aleatória Simples Escolhe-se n elementos de uma população de tamanho N amostra = {X 1, X 2,..., X n } (sem reposição) (com reposição) Exemplo: escolher 10 pixels de uma imagem 13x17 etapas:rotular cada pixel com um código único sortear aleatoriamente 10 códigos (tabelas ou geradores de números aleatórios) identificar os pixels selecionados OBS: método mais simples pressupõe população homogênea

6 Amostragem Aleatória Estratificada Primeiramente a população ( N ) é dividida em L sub-populações (estratos) com N 1, N 2,..., N L elementos. Para cada estrato, escolhe-se n i elementos aleatoriamente, totalizando n elementos. nini proporcionais a N i todos iguais tamanho ótimo (considera a variabilidade) Exemplo: escolher 10 pixels de uma imagem 13x17 etapas:selecionar um estrato rotular cada pixel com um código único sortear aleatoriamente n i códigos (tabelas ou geradores de números aleatórios) identificar os pixels selecionados repetir o processo para todos os estratos OBS: usado para população heterogênea (estratos homogêneos)

7 Amostragem Sistemática Se os elementos da população já se encontram ordenados segundo algum critério, pode-se selecionar um elemento qualquer e escolher um passo que definirá qual será o próximo elemento escolhido passo = 5 Exemplo: escolher pixels de uma imagem 13x17 com passos 5 em x e 4 em y etapas:escolher aleatoriamente um pixel na janela 5x4 superior esquerda com base nesse pixel, definir uma grade com espaçamento de 5x4 elementos identificar os pixels selecionados OBS: amostra-se uniformemente todo o espaço

8 Outras Amostragens Amostragem em múltiplos estágios talhões amostragem sistemática dentro do talhão Amostragem por conglomerados conglomerados amostra-se todos (ou alguns) elementos do conglomerado

9 Tamanho da Amostra É calculado com base no parâmetro que se deseja estimar e leva em consideração as incertezas inerentes a esta estimação: a) variação natural dos dados (variância populacional) b) erros do tipo I e II Exemplo: Deseja-se estimar a exatidão de um mapa de modo que o valor estimado não ultrapasse em 8% a exatidão verdadeira (para mais ou para menos), utilizando-se um nível de confiança de 95%. Suponha que a exatidão verdadeira é de 80%. - + amplitude total erro máximo de estimativa

10 Tamanho da Amostra É calculado com base no parâmetro que se deseja estimar e leva em consideração as incertezas inerentes a esta estimação: a) variação natural dos dados (variância populacional) b) erros do tipo I e II Exemplo: Deseja-se testar se a exatidão de um mapa é no mínimo de 85%, adotando-se 5% de nível de significância. Deseja-se, ainda, fixar a probabilidade em 6% de se aceitar um mapa com 81% de exatidão (erro tipo II). 0,85 0,81 H0H0 H1H1


Carregar ppt "Estatística: Aplicação ao Sensoriamento Remoto ANO 2010 Camilo Daleles Rennó"

Apresentações semelhantes


Anúncios Google