A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Vapor d´água e seus efeitos termodinâmicos Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron.

Apresentações semelhantes


Apresentação em tema: "Vapor d´água e seus efeitos termodinâmicos Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron."— Transcrição da apresentação:

1 Vapor d´água e seus efeitos termodinâmicos Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron

2 Funções Termodinâmicas e condições de equilíbrio Em estados de equilíbrio todas as transformações de fase são possíveis e são reversíveis Vapor Liquido Vapor Sólido Liquido Sólido

3 Portanto qualquer aumento em entropia de um corpo é igual em magnitude à diminuição em entropia do ambiente. Lembrando que a condição necessária para um estado de equilíbrio é que a entropia total de um corpo e do ambiente sejam ctes. EntropiaAumenta neste sentido SólidoLiquidoVapor

4 Entretanto, esta condição de equilíbrio é muito difícil de ser aplicada na prática. Dessa maneira, podemos avaliar duas funções de estado termodinâmico que podem nos levar a condições de equilíbrio sob certas condições: Energia Livre de Helmholtz Energia Livre de Gibbs

5 Energia Livre de Helmholtz - F A energia livre de Helmholtz, F, de um corpo de massa unitária é expressa como: F = u – TS onde u é a energia interna, T a temperatura e S a entropia do sistema

6 Analisando a variação de F (diferenciando) temos: dF = du – TdS – SdT lembrando que em um estado de equilíbrio e em um processo reversível, temos que da 1º lei da termodinâmica mas em um processo reversível temos:

7 Logo se um corpo estiver em equilíbrio e a sua temperatura e volume forem constantes, temos que: dF = 0 Por outro lado, se um corpo sofrer uma mudança de fase espontânea, ou seja, transformação irreversível, temos que: dF < -SdT - pd ( ou dF < du – TdS – SdT)

8 Se a transformação for isotérmica temos que: dF = du – TdS Se a transformação for espontânea, irreversível e com T e constantes: dF 0 Logo tanto a entropia (S) como a energia interna (du) aumentam.

9 Dessa maneira, em um estado de equilíbrio com T e Vol constantes, a energia livre de Helmholtz tem um mínimo e por esta razão é conhecida como potencial termodinâmico com Vol e T cte Dessa maneira, em um estado de equilíbrio com T e Vol constantes, a energia livre de Helmholtz tem um mínimo e por esta razão é conhecida como potencial termodinâmico com Vol e T cte.

10 Energia Livre de Gibbs - G A energia livre de Gibbs, G, de um corpo de massa unitária pode ser expressa como: Onde u é a energia interna, T a temperatura, p a pressão e o volume específico e S é a entropia do sistema

11 Analisando a variação de G, ou seja, diferenciando temos da 1º e da 2º lei da termodinâmica e para um processo reversível, temos

12 Logo, temos

13 Portanto se T e P são constantes para um corpo em equilíbrio, dG = 0 Já para um corpo que sofre uma transformação espontânea e irreversível: onde dG 0

14 O critério de equilíbrio termodinâmico de um corpo com T e P constantes é que a energia livre de Gibbs tenha um valor mínimo. O critério de equilíbrio termodinâmico de um corpo com T e P constantes é que a energia livre de Gibbs tenha um valor mínimo. Portanto, a energia livre de Gibbs é também conhecida como potencial termodinâmico a pressão constante. Portanto, a energia livre de Gibbs é também conhecida como potencial termodinâmico a pressão constante.

15 Adicionalmente temos que se uma molécula é removida de um material em uma determinada fase com T e P constantes, a mudança resultante na energia livre de Gibbs de um material é conhecida como Potencial Químico daquela fase.

16 Vamos agora analisar as Transformações de fase da água a partir da pressão de vapor de saturação

17 Equação do estado para o vapor dágua Diferentemente de outros constituintes atmosféricos, a água aparece na atmosfera em três fases: sólido, liquido e vapor. Na fase vapor, temos que o vapor dágua na atmosfera se comporta aproximadamente como um gás ideal

18 Logo a equação do estado pode ser re- escrita como: onde e=pressão de vapor, v = densidade do vapor e R v = é constante individual do vapor dágua (461,5 J/kgK) eq. (1)

19 De uma outra forma onde =R/ R v = m v /m = 0,622 eq. (2)

20 Equação de Clausius-Clapeyron Assumindo um ambiente fechado e termicamente isolado

21 Equilíbrio - I O equilíbrio é alcançado quando as taxas de condensação e evaporação se tornam iguais. Logo a temperatura do ar e a do vapor se igualam a do liquido e não existerá uma transferência liquida de uma fase para outra.

22 Equilíbrio - II Quando isso ocorre, dizemos que o ar acima do liquido esta saturado com vapor dágua e a pressão parcial sob estas condições é definida como pressão de vapor de saturação. Quando isso ocorre, dizemos que o ar acima do liquido esta saturado com vapor dágua e a pressão parcial sob estas condições é definida como pressão de vapor de saturação.

23 Pressão de Vapor de Saturação Também conhecida como equação de Clausius Clapeyron – C.C. Pressão de saturação entre as interfaces – Vapor liquido (condensação) – Vapor sólido (sublimação) – Liquido Sólido (congelamento)

24 Durante as transições de fase, faz-se necessário energia (calor) para sobrepor a energia cinética de algumas moléculas, por exemplo vapor liquido, vapor sólido e liquido sólido.

25 Para converter uma unidade de massa de água liquida para vapor a T e P constantes, temos que adicionar energia (calor) ao sistema, ou seja, calor latente. No caso de liquido para vapor utilizamos o calor latente de vaporização (Lv).

26 da 1º lei da termodinâmica A seguinte notação é adotada para as diferentes fases da água: 1-liquido, 2-vapor e 3-sólido. eq. (3)

27 isotérmico e isobárico Considerando que o processo de mudança é isotérmico e isobárico a equação (3) pode ser integrada e se tornar: eq. (4)

28 Combinando a mudança de fase a um processo reversível; ou seja:

29 Integrando

30 Re-arranjando os termos por estado de fases: eq. (5)

31 Esta igualdade mostra uma combinação particular de variáveis termodinâmicas que permanecem constantes em uma mudança de fase isotérmica e isobárica.

32 Esta combinação é conhecida como a função de Gibbs : G1 = G2 Logo a eq (5) se reduz a G1 = G2

33 Embora G seja constante durante a transformação de fase, a função de Gibbs varia (aumento da entropia), logo T e P podem variar. Dessa maneira, temos que analisar a variação da energia livre de Gibbs (dG) durante esta transição.

34 Durante esta transição teremos que o processo é não isotérmica e não-isobárico eq. (6)

35 Levando em conta a 1 o e 2 o lei da termodinâmica: dq´ = du + e s d dq´= TdS A eq. (6) se torna: dg = de s – SdT eq. (7)

36 Supondo a vaporização de uma unidade de massa de água liquida em um processo reversível, tinhamos que: G1=G2 Logo como haverá uma variação da energia livre de Gibbs durante a transformação de fase, temos que G1 G1+dG1 G2 G2+dG2

37 Mas como G1 = G2 G1+dG1 e G2+dG2 Portanto dG1= dG2, logo :

38 eq. (8) Equação de Clausius-Clapeyron Lembrando:

39 Analogamente podemos ter as transições de vapor-sólido e liquido e sólido Vapor - Liquido Vapor - Sólido Sólido- Liquido

40 Vapor - Liquido Vapor - Sólido Sólido- Liquido

41 e s (T) e si (T) e sf T)

42 Em condições atmosféricas, temos que 2 >> 1 (vapor>>liquido), e o vapor age como se fosse um gás ideal, da mesma forma temos que 2 >> 3 (vapor>>sólido )

43 Simplificando a eq. Clausius-Clapeyron (C.C.), Lembrando a eq. estado do vapor: =R v T/e s eq. (9)

44 Assumindo que o Calor Latente de vaporização é cte, podemos integrar a equação (9):

45 Similarmente para a fase sólida onde T o =273 o K eq. (10)

46 e s (T) e si (T) e sf T)

47

48

49 Diagrama que esquematiza as possíveis situações entre e, es, e ei em uma nuvem com fase mista: (a) e > es e e > ei processo onde tanto as gotas liquidas como as particulas de gelo crescem; (b) e ei processo onde as gotículas líquidas evaporam e as partículas de gelo crescem – processo de WBF; (c) e < es e e < ei processo onde tanto as gotículas de água como as particulas de gelo evaporam. Korolev, JAS 2006.


Carregar ppt "Vapor d´água e seus efeitos termodinâmicos Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron."

Apresentações semelhantes


Anúncios Google