A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Escoamento e Transporte de Massa

Cópias: 1
11:43 Escoamento e Transporte de Massa Prof. Carlos Ruberto Fragoso Júnior.

Apresentações semelhantes


Apresentação em tema: "Escoamento e Transporte de Massa"— Transcrição da apresentação:

1 Escoamento e Transporte de Massa
Prof. Carlos Ruberto Fragoso Júnior 11:43

2 Tópicos Introdução ao Escoamento e Transporte de Massa
Equações do Escoamento Simplificações das Equações do Escoamento Equação do Transporte de Massa O Termo de Perdas e Ganhos

3 Tipos de Escoamento na bacia
Importância do Escoamento Tipos de Escoamento na bacia Precipitação que não infiltra pode se acumular sobre a superfície e pode se movimentar sobre a superfície = escoamento superficial. Outras formas de escoamento = subsuperficial; subterrâneo Escoamento superficial é muito importante na hidrologia porque admite-se que é o responsável pelos picos dos hidrogramas (cheias) Escoamento está relacionado à disponibilidade da água para usos múltiplos Escoamento transporta sedimentos, matéria orgânica, nutrientes e organismos

4 Tipos de Escoamento na bacia
Escoamento superficial Escoamento sub-superficial Escoamento subterrâneo

5 Processos da parte terrestre do ciclo hidrológico
evap chuva Interceptação Depressões Infiltração Escoamento superficial Armazenamento no solo Escoamento Sub-superficial Percolação Vazão no rio Armazenamento no subsolo Escoamento Subterrâneo

6 Tipos de escoamento bacia
Superficial Sub-superficial ?? Subterrâneo

7 Tipos de Escoamento Chuva, infiltração, escoamento superficial

8 Tipos de Escoamento Chuva, infiltração, escoamento superficial, escoamento subterrâneo Camada saturada

9 Tipos de Escoamento Escoamento sub-superficial

10 Tipos de Escoamento Depois da chuva: Escoamento sub-superficial e escoamento subterrâneo Camada saturada

11 Tipos de Escoamento Estiagem: apenas escoamento subterrâneo
Camada saturada

12 Tipos de Escoamento Estiagem: apenas escoamento subterrâneo
Camada saturada

13 Tipos de Escoamento Estiagem: apenas escoamento subterrâneo
Camada saturada

14 Tipos de Escoamento Estiagem muito longa = rio seco Rios intermitentes
Camada saturada

15 Geração de escoamento superficial
Geração do Escoamento Superficial Geração de escoamento superficial Escoamento até a rede de drenagem Escoamento em rios e canais Escoamento em reservatórios

16 Formação do Escoamento
Superficial Geração do Escoamento Superficial Precipitação que atinge áreas impermeáveis Precipitação intensa que atinge áreas de capacidade de infiltração limitada Precipitação que atinge áreas saturadas

17 Fonte: Rampelloto et al. 2001

18 Difuso x concentrado Escoamento difuso ocorre na bacia, sobre superfícies ou em pequenos canais efêmeros. Escoamento concentrado ocorre em canais. Até onde o escoamento é considerado difuso vai depender da escala em que o fenômeno vai ser representado.

19 Transporte de Massa Transporte de Massa? Pode estar influenciado por:
Transporte de substâncias na água devido a turbulência de pequena escala e velocidades médias em grande escala Diluição e transporte de poluentes no estuário devido a circulação das águas Pode estar influenciado por: Variações de maré – semidiurna/diurna Variações induzidas pelo vento– períodos diversos Frequência inercial– rotação da Terra Efeitos sazonais – meteorológicos, escoamentos de rios

20 Transporte de Massa Tradicionalmente os estudos de hidrologia se ocupavam basicamente da quantidade da água e não da sua qualidade. Esta ótica está bem presente em grande parte dos livros de hidrologia aplicada. Entretanto, cada vez mais é importante incluir um conhecimento mínimo de qualidade de água nos estudos de hidrologia.

21 Motivos para estudar qualidade de água
Há uma interligação entre qualidade e quantidade de água. Muitos problemas de qualidade estão associados à quantidade de água disponível para diluição de poluentes. Muitas fontes de poluentes surgem junto com a própria formação do escoamento. Na vida profissional é raro encontrar engenheiros que se dediquem apenas a questões de quantidade de água. Profissionais com uma visão mais abrangente são muito necessários.

22 Advecção / Difusão / Dispersão
Processos de Transporte de Massa Advecção / Difusão / Dispersão

23 Processos de Transporte de Massa
Advecção : Transporte com a velocidade média da água. Difusão : Transporte que ocorreria mesmo que a água estivesse parada. Substância se espalha de regiões de mais alta concentração para regiões de mais baixa concentração. Dispersão : Espécie de difusão que ocorre porque a velocidade da água não é sempre igual à média.

24 Advecção / Difusão / Dispersão
Processos de Transporte de Massa Advecção / Difusão / Dispersão

25 Advecção

26 Advecção

27 Advecção Substância não se espalha, apenas percorre uma distância
na mesma velocidade (média) da água

28 Difusão

29 Difusão

30 Difusão Substância se espalha pelo movimento aleatório das moléculas
mesmo que a velocidade média seja zero.

31 1a Lei de Fick - Difusão D é um coeficiente de difusão (unidades de m2/s) J é o fluxo de massa de C massa vai de regiões de mais alta para mais baixa concentração

32 Dispersão

33 Dispersão

34 Dispersão Substância percorre uma distância com a velocidade
média da água e além disso se espalha, porque a velocidade da água não é sempre igual à média

35 Dispersão Velocidades diferentes e turbulência criam um efeito semelhante ao da difusão Em rios o efeito da dispersão é mais importante do que o da difusão, embora os dois ocorram juntos e contribuam para o espalhamento.

36 1a Lei de Fick - Dispersão
E é um coeficiente de dispersão (unidades de m2/s) J é o fluxo de massa de C massa vai de regiões de mais alta para mais baixa concentração

37 Coeficiente de dispersão longitudinal
Chapra (1997) cap. 14 E: coeficiente de dispersão longitudinal (m2/s) B: largura do rio (m) h: profundidade (m) u: velocidade da água (m/s) S: declividade média (m/m)

38 Processos de Transporte de Massa
Processos de Difusão & Dispersão? Difusão: Movimento aleatório das partículas Causa - turbulência Pequena escala espacial/temporal Dispersão: Diferentes velocidades de lâminas de água adjacente Ação de cisalhamento entre as lâminas de água Promove espalhamento longitudinal das substâncias

39 Processos de Transporte de Massa
Processos de difusão & dispersão? Difusão & dispersão descritos empiricamente: Coeficiente de difusão turbulenta – units m2/s Coeficiente de dispersão longitudinal Difusão & dispersão quantificados a partir de: Valores da literatura para tipos de sistemas similares Uso de equação empírica - complexo Monitoramento da salinidade ou corantes

40 Exemplo - Transporte de Massa

41 Exemplo - Transporte de Massa

42 Classificação do Escoamento
Escoamento permanente uniforme não - uniforme gradualmente variado variado Ressalto hidráulico As equações que regem o escoamento permanente são : equação da continuidade e equação de energia

43 Escoamento não-permanente
Gradualmente variado escoamento em rios, reservatórios durante inundações e outros períodos variado transiente hidráulico em canalizações, rompimento de barragem, etc

44 Equações do escoamento não - permanente
continuidade q Contribuição lateral em m3/m/s Variação de vazão no trecho Variação de volume no tempo dx

45 Quantidade de movimento
Conservação das forças no tempo gravidade, fricção e pressão

46 Equação da quantidade de movimento
Termos de inércia do escoamento Termo de pressão Termo de atrito Termo de gravidade Simplificações: fluido incompreensível, função contínua, pressão hidrostática, declividade do fundo, escoamento unidimensional, equação de atrito.

47 Equações do Escoamento (equações de Saint-Venant)
y h datum ou

48 Simplificações das equações do escoamento
Hidrodinâmico – Não permanente e não uniforme Hidrodinâmico – Permanente e não uniforme Difusão Onda Cinemática Utiliza uma relação entre o armazenamento e vazão Armazenamento

49 Modelo de Armazenamento
dS/dt = I - Q equação da continuidade concentrada e S = f(Q, I, Q’, I’) Por exemplo: Modelo Muskingum, Pulz, etc considera os efeitos de armazenamento e despreza os efeitos dinâmicos. Utilizado para simular escoamento em rios e reservatórios, quando estes efeitos são pequenos. Não pode ser utilizado quando existem efeitos de jusante sobre o escoamento de montante. Por exemplo, em rios próximo ao mar, quando tem refluxo. Relação bi-unívoca entre vazão e nível (curva - chave)

50 Exemplo: Modelo reservatório linear simples que ajusta adequadamente uma recessão de vazão. Q = V / k Q(t+dt) = Q(t) . exp(-dt/k)

51

52

53 Q(t+dt) = Q(t) . exp(-dt/k) Para k = 20

54 Comportamento em rios e reservatórios

55 Modelo Onda Cinemática
Equação da continuidade equação dinâmica So = Sf o modelo despreza os termos de inércia e de pressão; não considera os efeitos de jusante sobre o escoamento de montante e não pode ser utilizado para simular o escoamento próximo ao mar; considera relação bi-unívoca entre vazão e nível, curva - chave

56 Modelo Onda Cinemática
Critérios de Aplicabilidade Comparação das celeridades Índice K Período da onda

57 Modelo de Difusão Equação da continuidade equação dinâmica
despreza os termos de inércia do escoamento dinâmico considera os efeitos de jusante no escoamento de montante, como o próximo ao mar e confluência dos rios; relação entre nível, vazão e declividade da linha d’água para uma seção de rio.

58 Funções da seção de um rio
h2 h1 Armazenamento ou Onda Cinemática h1 Para valores de h2 h Sem remanso Q Q dQ Com remanso

59 Modelo de Difusão y Z datum
Qo = vazão de escoamento sem efeito de jusante

60 Exemplo A B Afluente B A Afluente ao mar ou lago

61 Exemplo Afluência da bacia 2 Afluência da bacia 1 Canal de ligação
Reservatório 1 Reservatório 2

62 Modelo de Difusão Critérios de Aplicabilidade Período da onda

63 Exercício Em um rio que converge para o mar, na seção A foram efetuadas medições de vazão e estabelecida a curva-chave quando não há efeito de jusante. A curva-chave é dada por: A Na seção B são feitas leituras simultâneas com a seção A. Estabeleça a equação para estimar a vazão em B com base nas leituras em A e B. B Afluente ao mar

64 Modelo Hidrodinâmico Duas equações completas do escoamento
resolve todas as situações, mas exige dados que nem sempre estão disponíveis; condicionantes de discretização devido as características numéricas; solução robusta e confiável quando o escoamento é unidimensional

65 O que queremos representar com os modelos?
Efeitos que ocorrem com a onda de cheia quando se propaga ao longo de um rio ou canal. Que efeitos são esses?

66 Translação A B Q t Hidrograma em A Hidrograma em B

67 Amortecimento A B Q t Hidrograma em A Hidrograma em B

68 Efeitos de jusante A h em B (maré) B Q Hidrograma em A Hidrograma em B

69 Equação de transporte

70 Equação de transporte onde é a concentração do poluente ; H é a profundidade total; Kx, Ky e Kz são os coeficientes de difusividade nas direções x, y e z, respectivamente e é o termo de perdas e ganhos do poluente

71 Coeficiente de difusão
O coeficiente de difusão (Kx, Ky e Kz) é o parâmetro fundamental para a taxa de difusão em diferentes direções no espaço. A taxa de difusão depende de fatores de mistura no ecossistema aquático. Por exemplo, em ambientes lênticos (baixas velocidades) as taxas de difusão são mais baixas do que em ambientes lóticos (altas velocidades).

72 Coeficiente de difusão
Difusão longitudinal Difusão vertical onde u é a velocidade da água na direção x e H é a profundidade da água. O coeficiente de difusão longitudinal (Kx) é muito maior do que o coeficiente de difusão vertical (Kz) porque ele incorpora a convecção diferencial devido ao perfil de velocidade vertical logaritmo em um escoamento

73 O Termo de Perdas e Ganhos
Depende da substância; A substância pode ser conservativa ou não conservativa

74 Substâncias conservativas
Substância que não reagem, não alteram a sua concentração por processos físicos, químicos e biológicos, exceto a mistura. Exemplo: sais

75 Exemplo parâmetro conservativo
QA CA QR CR QF CF C distância

76 Parâmetros não conservativos
Reagem com o ambiente alterando a concentração da substância. Exemplo: DBO, temperatura, coliformes, OD Reações químicas Consumo na cadeia trófica Sedimentação = deposição no fundo Trocas com a atmosfera

77 Exemplo parâmetro não conservativo
QA CA QR CR QF CF QF2 CF2 C distância

78 O Termo de Perdas e Ganhos
Exemplo (Produção Primária Aquática):

79 O Termo de Perdas e Ganhos
Equação de transporte/crescimento/consumo:

80 Fatores de Produtividade

81 Fatores de Produtividade

82 Fatores de Produtividade

83 Radiação solar

84 Radiação solar Algas Zooplâncton Outros organismos Nutrientes
bentônicos

85 Radiação solar Algas Zooplâncton Outros organismos Nutrientes
Advecção Algas Zooplâncton Outros organismos Difusão Consumo Respiração Advecção Nutrientes Difusão Fontes Organismos bentônicos

86 Radiação solar Algas Zooplâncton Outros organismos Nutrientes
Consumo Advecção Algas Zooplâncton Outros organismos Difusão Consumo Respiração Advecção Nutrientes Difusão Fontes Organismos bentônicos

87 Radiação solar Algas Zooplâncton Outros organismos Nutrientes
Consumo Advecção Algas Zooplâncton Outros organismos Difusão Consumo Respiração Advecção Nutrientes Sedimentação Difusão Regeneração pelágica Fontes Organismos bentônicos

88 Regeneração bentônica
Radiação solar Consumo Advecção Algas Zooplâncton Outros organismos Difusão Consumo Respiração Advecção Nutrientes Sedimentação Difusão Regeneração pelágica Fontes Regeneração bentônica Organismos bentônicos

89 Termo de Perdas e Ganhos
Cálculo da taxa efetiva de crescimento: Nutrientes (μN) Luz e Temperatura (μLT) Perdas (μP)

90 Termo de Perdas e Ganhos
Cálculo da taxa efetiva de crescimento: Nutrientes (μN) Luz e Temperatura (μLT) Fotossíntese (μF=μNxμLT) Perdas (μP)

91 Termo de Perdas e Ganhos
Cálculo da taxa efetiva de crescimento: Nutrientes (μN) Luz e Temperatura (μLT) Fotossíntese (μF=μNxμLT) Perdas (μP) Taxa efetiva (μeff)

92 Termo de Perdas e Ganhos
Modelagem Fitoplâncton/Nutrientes: Clorofila a: Nitrogênio total: Fósforo total:

93 Termo de Perdas e Ganhos
Modelagem Fitoplâncton/Nutrientes:


Carregar ppt "Escoamento e Transporte de Massa"

Apresentações semelhantes


Anúncios Google