A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

PROPAGAÇÃO DO CALOR.

Apresentações semelhantes


Apresentação em tema: "PROPAGAÇÃO DO CALOR."— Transcrição da apresentação:

1 PROPAGAÇÃO DO CALOR

2 PROCESSOS DE TRANSFERÊNCIA DE CALOR
Condução Convecção Radiação térmica Convecção Radiação térmica Condução

3

4 Condução térmica É a propagação de calor em que a energia térmica passa de partícula para partícula, sem transporte de matéria. Ocorre principalmente nos metais (condutores térmicos). Exemplos de isolantes térmicos: água, gelo, ar, lã, isopor, vidro, borracha, madeira, serragem, etc.

5 1. Condução térmica Aplicações de isolantes térmicos: Exemplo1: Os iglus, embora feitos de gelo, impedem a condução de calor para o meio externo. Elevando, assim sua temperatura interna.

6 As roupas de frio são um exemplo de isolante térmico; o ar que fica
1. Condução térmica Exemplo2: As roupas de frio são um exemplo de isolante térmico; o ar que fica retido entre suas fibras dificulta a condução de calor. Os pelos dos animais e a serragem também são bons isolantes térmicos porque retêm ar.

7 FLUXO DE CALOR NA CONDUÇÃO
“Lei de Fourier”: K é a condutividade térmica [W/(m ºC)] K (Fe a 300K) = 80,2 W/(m ºC) K (água a 300K) = 5,9 x 10-1 W/(m ºC) K (ar a 300K) = 2,6 x 10-2 W/(m ºC)

8 Dedução Qualitativa da Lei de Fourier:

9

10 Exemplo:

11 2. Convecção térmica É a propagação de calor com transporte de matéria. Ocorre somente nos líquidos e gases. Exemplo1: Água no fogo. A água quente na parte inferior, menos densa, sobe, enquanto a água Fria na parte superior, mais densa, desce. Esse movimento de água quente e fria água fria, chamado de corrente de convecção, faz com que a água se aqueça como um todo.

12 2. Convecção térmica Exemplo2: Ar condicionado.
Para facilitar o resfriamento de uma sala, o condicionador de ar deve ser colocado na parte superior da mesma. Assim, o ar frio lançado, mais denso, desde, enquanto o ar quente na parte inferior, menos denso, sobe (corrente de convecção).

13 2. Convecção térmica Exemplo3: Geladeira.
Para facilitar o resfriamento da geladeira, o congelador deve ser colocado na parte superior da mesma. Assim, o ar frio próximo ao congelador, mais denso, desce, enquanto o ar quente na parte inferior, menos denso, sobe (corrente de convecção).

14 2. Convecção térmica Exemplo5: Brisa litorânea: De dia, o ar junto à areia se aquece e, por ser menos denso, sobe e é substituído pelo ar frio que estava sobre a água. Assim, forma-se a brisa que sobra do mar para a terra, a brisa marítima. À noite, o ar junto à água, agora mais aquecido, sobe e é substituído pelo ar frio que estava sobre a areia. Assim, forma-se a brisa que sopra da terra para o mar, a brisa terrestre.

15 3. Irradiação térmica É a propagação de calor através de ondas eletromagnéticas, principalmente os raios infravermelhos (chamados de ondas de calor). Ocorre inclusive no vácuo.

16 TRANSMISSÃO DE CALOR POR RADIAÇÃO

17 Modelos adotados na radiação térmica
REFLEXÃO O refletor perfeito (espelho ideal), r = 1. Absorção Um corpo negro (absorvedor perfeito), a = 1. Um corpo cinzento, a < 1. Transmissão Um corpo transparente, t ≠ 0 (zero). Um corpo opaco, t = 0 (zero).  

18 TRANSMISSÃO DE CALOR POR RADIAÇÃO
Lei dos Intercâmbios: Todo bom absorvedor é um bom emissor de radiação térmica e todo bom refletor é um mau emissor de radiação térmica. Corpo negro é também o emissor ideal de radiação térmica (radiador ideal)!!!! Corpos Escuros: bons absorvedores e emissores de radiação térmica. Ex.: fuligem (a =  = 0,94). Corpos claros e polidos: maus absorvedores e emissores de radiação térmica. Ex.: prata polida (a =  = 0,02).

19 FLUXO DE CALOR NA RADIAÇÃO
“Lei de Stefan-Boltzmann”: E – Poder emissivo [W/m2];  – emissividade (0 ≤  ≤ 1); σ – Constante de Stefan-Boltzmann [5,7 x 10-8 W/(m2 K4)]; T – Temperatura absoluta do corpo (K).

20

21

22

23

24 GARRAFA TÉRMICA (Vaso de Dewar):
A garrafa térmica tem por finalidade evitar as propagações de calor. Ela é constituída por uma ampola de vidro com faces espelhadas (as faces espelhadas evitam a irradiação). A ampola tem parede dupla de vidro com vácuo entre elas (o vácuo evita a condução e a convecção). Externamente, uma camada de plástico protege a ampola.


Carregar ppt "PROPAGAÇÃO DO CALOR."

Apresentações semelhantes


Anúncios Google