A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Mecânica Quântica: uma abordagem (quase) conceitual

Apresentações semelhantes


Apresentação em tema: "Mecânica Quântica: uma abordagem (quase) conceitual"— Transcrição da apresentação:

1 Mecânica Quântica: uma abordagem (quase) conceitual
Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ Workshop MNPEF UNB, maio de 2015

2 Sumário Ensino e aprendizagem de mecânica quântica Fenômenos quânticos
Princípios da mecânica quântica Sistemas quânticos simples: aplicações Como seguir em frente Comentários finais C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

3 Ensino e aprendizagem de mecânica quântica
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

4 Ensino e aprendizagem de mecânica quântica
Dificuldades conceituais Superposição quântica Probabilidade subjetiva x objetiva Complementaridade O problema da medida Realismo vs. localidade ... Dificuldades matemáticas Vetores Números complexos Espaços vetoriais complexos Operadores, autovalores, autovetores Dimensão infinita, operadores diferenciais, funções especiais C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

5 Ensino e aprendizagem de mecânica quântica
Entre os alunos as dificuldades matemáticas ganham proeminência pela necessidade de adquirir um domínio operacional da teoria, essencial a aplicações. Como veremos, é possível expor a teoria quântica – sem descaracterizá-la – reduzindo as ferramentas matemáticas a vetores e um pouco de números complexos. Com isso, torna-se viável dar mais atenção aos aspectos conceituais. Tal abordagem pode ser de interesse a alunos para os quais o aspecto operacional não é o mais importante (licenciandos em física, por exemplo). C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

6 Fenômenos Quânticos Charles Addams, New Yorker, 1940
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

7 Um experimento com a luz
feixe luminoso pouco intenso semiespelho (50-50%) espelho detectores de luz D1 D2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

8 Resultado do experimento
Os detectores nunca disparam ao mesmo tempo: apenas um, ou D1 ou D2, é ativado a cada vez. D1 D2 ou 50% 50% probabilidade C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

9 Se a luz fosse uma onda D1 D2 ... os detectores deveriam disparar ao mesmo tempo. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

10 Se a luz é composta por partículas
ou D1 D2 ... ou D1 dispara, ou D2 dispara. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

11 Conclusão A luz é composta por partículas: os fótons.
O detector que dispara aponta “qual caminho” o fóton tomou. caminho 2 caminho 1 D2 D1 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

12 Sobre o ensino do conceito de fóton
Os experimentos de anticoincidência fornecem evidência simples e direta da natureza corpuscular da luz. Mais fácil de discutir (principalmente no ensino médio) que o efeito fotoelétrico. Ao contrário do que se lê em muitos livros-texto, o fóton não é necessário para explicar os efeitos fotoelétrico e Compton. G. Beck, Zeitschrift für Physik 41, 443 (1927) E. Schroedinger, Annalen der Physik 82, 257 (1927) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

13 Outro experimento com a luz
D2 D1 segundo semiespelho feixe luminoso “fóton a fóton” interferômetro de Mach-Zehnder C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

14 Preliminares: um feixe bloqueado
1 2 50% 25% C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

15 O outro feixe bloqueado
1 2 50% 25% C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

16 Resultado fácil de entender com partículas
1 2 50% 25% = caminho do fóton C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

17 De volta ao interferômetro
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

18 Resultado do experimento:
0% 100% D1 D2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

19 Difícil de entender se os fótons seguem caminhos definidos
1 25% 2 25% Se o fóton segue o caminho 1 (2) não deve fazer diferença se o caminho 2 (1) está aberto ou fechado, e portanto vale o resultado do experimento preliminar. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

20 Proposição* Cada fóton segue ou o caminho 1 ou o caminho 2
consequência: probabilidade do detector Dn disparar apenas o caminho 2 aberto apenas o caminho 1 aberto * The Feynman Lectures on Physics, v.3, p.1-5 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

21 Teste da Proposição Experimentalmente: a proposição é falsa!
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

22 “o fóton segue ou pelo caminho 1 ou pelo caminho 2”
Repetindo: A afirmativa “o fóton segue ou pelo caminho 1 ou pelo caminho 2” é falsa. “… um fenômeno que é impossível, absolutamente impossível, de explicar em qualquer forma clássica, e que traz em si o coração da mecânica quântica.” R. P. Feynman, The Feynman Lectures on Physics, v.3, p.1-1 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

23 Por onde vai o fóton? Experimentalmente, a opção “ou 1 ou 2” é falsa.
Se os dois caminhos forem fechados, nenhum fóton chega aos detectores. Logo, “nem 1 nem 2” também não é aceitável. Parece restar apenas a opção “1 e 2”: o fóton segue os dois caminhos ao mesmo tempo. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

24 Uma resposta melhor Não faz sentido falar sobre o caminho do fóton no interferômetro, pois a montagem experimental não permite distinguir os caminhos 1 e 2. A pergunta “qual o caminho do fóton?” só faz sentido frente a um aparato capaz de produzir uma resposta. Quando alguém deseja ser claro sobre o que quer dizer com as palavras “posição de um objeto”, por exemplo do elétron (em um sistema de referência), ele deve especificar experimentos determinados com os quais pretende medir tal posição; do contrário essas palavras não terão significado. - W. Heisenberg, The physical content of quantum kinematics and mechanics (o artigo de1927 sobre o princípio da incerteza) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

25 Fácil de entender num modelo ondulatório
interferência construtiva destrutiva C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

26 Comprimentos variáveis
L1 L2 PD2 PD1 L1, L2 = comprimentos ajustáveis dos “braços” do interferômetro C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

27 Resultado experimental:
L1 – L2 1 PD1 PD2 (linha tracejada: “ou 1 ou 2” ↔ PD(1) + PD(2)) Padrão de interferência: é possível definir um comprimento de onda. Só há um fóton de cada vez no interferômetro: o fóton “interfere com ele mesmo”. Se cada fóton seguisse um único caminho (ou 1 ou 2), o comprimento do outro caminho não deveria influenciar o resultado. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

28 Interferência de nêutrons
interferômetro de nêutrons S. A. Werner, Neutron interferometry, Physics Today 33, 24 (dezembro1980) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

29 Interferência de elétrons
A. Tonomura et al., Demonstration of single-electron build-up of an interference pattern, Am. J. Phys. 57, 117 (1989) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

30 E se os caminhos forem distinguíveis?
interferência desaparece ! diferença de “caminhos” (ajustável) P. Bertet et al., A complementarity experiment with an interferometer at the quantum-classical boundary, Nature 411, 166 (2001) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

31 E se os caminhos forem distinguíveis?
“Massa”  0 caminho identificado não há padrão de interferência “Massa”  ∞ caminho não identificado padrão de interferência N  “Massa” P. Bertet et al., A complementarity experiment with an interferometer at the quantum-classical boundary, Nature 411, 166 (2001) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

32 impossível determinar
E se a informação sobre o caminho for apagada? impossível determinar o caminho interferência P. Bertet et al., A complementarity experiment with an interferometer at the quantum-classical boundary, Nature 411, 166 (2001) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

33 Quando há interferência?
Resultado pode ser obtido de duas maneiras alternativas, indistinguíveis experimentalmente interferência (“1 e 2”) Resultado pode ser obtido de duas maneiras alternativas, distinguíveis experimentalmente (“ou 1 ou 2”) não há interferência C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

34 Princípios da Mecânica Quântica
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

35 Princípios da Mecânica Quântica
Vetores de estado e o princípio da superposição A regra de Born Complementaridade e o princípio da incerteza Redução do vetor de estado Evolução unitária Sistemas de N estados C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

36 Vetores de Estado e o Princípio da Superposição
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

37 Sistemas de dois estados
esquerda / direita horizontal / vertical para cima / para baixo sim / não 0 / 1 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

38 Sistemas de dois estados
fóton refletido fóton transmitido cara coroa C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

39 Sistemas de dois estados
grandeza física observável: a2 a1 a2 a1 A = ? ou a2 a1 medidor de “A” C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

40 Sistemas clássicos Sistema clássico de dois estados, A = a1 e A = a2.
Representação dos estados: pontos no “eixo A” sistema tem A = a2 sistema tem A = a1 A a1 a2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

41 Sistemas quânticos: vetores de estado
Sistema quântico de dois estados, A = a1 e A = a2. Representação dos estados: vetores ortogonais (e de comprimento unitário) em um espaço de duas dimensões sistema tem A = a2 sistema tem A = a1 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

42 A notação de Dirac vetor ↔ exemplos: identificação
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

43 O que muda? ? O que muda é o seguinte:
Passar de dois pontos em uma reta para dois vetores perpendiculares não parece ser mais do mudar o sistema de “etiquetagem” dos estados. ? A a1 a2 O que muda é o seguinte: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

44 O Princípio da Superposição
Qualquer combinação linear dos vetores |a1ñ e |a2ñ representa um estado físico do sistema. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

45 Significado de |ñ A = a1 e A = a2 ? esquerda e direita?
horizontal e vertical? sim e não? 0 e 1? C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

46 O espaço de estados é grande
Um sistema quântico de dois estados tem muito mais que dois estados, tem infinitos estados. Os estados |a1 e |a2 formam uma “base” do espaço de estados. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

47 Princípio da Superposição: formulação geral
Se |ñ e |ñ são vetores de estado, qualquer combinação linear deles representa um estado físico do sistema. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

48 Um ‘detalhe técnico’ As constantes c1 e c2 podem ser números complexos (o espaço de estados é um espaço vetorial complexo). Deve-se ter cuidado com figuras como esta: c2 c1 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

49 Outro ‘detalhe técnico’
Qual o significado de “ortogonalidade” num espaço vetorial complexo? Como se define “comprimento” de um vetor nesse espaço? ? C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

50 A Regra de Born C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

51 A Regra de Born c2 c1 A probabilidade de uma medida da grandeza física A resultar em A = an é (n = 1, 2) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

52 A Regra de Born |ñ a1 a2 medidor de “A”
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

53 Probabilidade total Só há dois resultados possíveis, ou a1 ou a2.
A probabilidade da medida resultar ou em a1 ou em a2 é 1 (100%) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

54 Normalização do vetor de estado
c2 c1 Norma de |ñ: (tamanho do vetor |ñ) Com essa definição: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

55 Normalização do vetor de estado
|ñ e |ñ têm normas diferentes mas representam o mesmo estado físico! C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

56 Normalização do vetor de estado
Todos os vetores ao longo de uma dada direção representam o mesmo estado físico. Podemos trabalhar apenas com vetores “normalizados”: ou seja, C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

57 Vetores normalizados: a Regra de Born
|ñ a2 a1 medidor de “A” C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

58 Amplitude de probabilidade
cn  amplitude de probabilidade probabilidade = |amplitude de probabilidade|2 “função de onda” C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

59 Frequência dos resultados de medidas
N1  a1 N2  a2 N medidas de A (N ) podemos prever a frequência dos resultados: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

60 Valor médio dos resultados
valor médio de A: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

61 Incerteza c2 c1 c1, c2  0 impossível prever o resultado de uma medida ou Se possível prever o resultado (probabilidade = 100%): valor de A “bem definido” C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

62 A = incerteza de A no estado |
ou A = 0 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

63 Complementaridade e o Princípio da Incerteza
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

64 Complementaridade A B a1 a2 duas grandezas físicas: A e B b1 b2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

65 Grandezas compatíveis e incompatíveis
A e B compatíveis A e B incompatíveis A e B complementares: incompatibilidade “máxima” C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

66 O Princípio da Incerteza
A bem definido, B incerto ( A = 0,  B  0) A e B incertos ( A  0,  B  0) B bem definido, A incerto ( B = 0,  A  0) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

67 O Princípio da Incerteza
A e B incompatíveis  nenhum estado | com  A = 0 e  B = 0 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

68 Exemplo: posição e momentum
duas posições: |x1, |x2 (“aqui”, “ali”) dois estados de movimento: |p1, |p2 (“repouso”, “movimento”) impossível ter um estado com posição e momentum bem definidos C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

69 Resumo da “cinemática” quântica
vetor no espaço de estados estado físico sistema de eixos (uma “base”) no espaço de estados grandeza física C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

70 Resumo da “cinemática” quântica
projeção do vetor de estado no eixo |an probabilidade da medida resultar em A = an probabilidade de uma medida da grandeza A resultar em A = a1 ou A = a2 grandezas físicas incompatíveis (complementares) diferentes sistemas de eixos no espaço de estados C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

71 Como o vetor de estado muda com o tempo?
“Redução” durante uma medida Evolução unitária (equação de Schroedinger) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

72 Redução do Vetor de Estado

73 Redução do vetor de estado
antes da medida a2 a1 depois da medida C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

74 Redução do vetor de estado
resultado A = a2 A = a1 medida de A resulta em an  logo após a medida o vetor de estado do sistema é |an C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

75 Redução do vetor de estado
A redução garante que a medida é repetível: se obtemos A = an e imediatamente refazemos a medida, encontramos A = an novamente com 100% de probabilidade. O estado | an  é o único em que a nova medida resultará em A = an com 100% de probabilidade. |  |an: a medida causa uma alteração imprevisível e incontrolável do estado quântico; versão moderna do “salto quântico”. A redução aplica-se a medidas “ideais” (medidas projetivas ou de von Neuman, ). Na prática, muitas vezes não faz sentido falar em redução a | an . Por exemplo, um fóton geralmente é absorvido durante sua detecção; não há mais fóton após a primeira medida. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

76 Evolução Unitária

77 A equação de Schroedinger
Evolução temporal do vetor de estado: |(0)  |(t) Dinâmica quântica: determinada pela energia do sistema (o conceito de força é pouco relevante). C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

78 A (solução da) equação de Schroedinger
Sistema de dois estados Dois níveis de energia: E1, E2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

79 A (solução da) equação de Schroedinger
ћ = constante de Planck ( 2)  110-34 Js Números complexos são inevitáveis. Mesmo que as componentes do vetor de estado sejam reais em t = 0, para t  0 elas serão complexas: A evolução |(0)  |(t) ditada pela equação de Schroedinger é contínua (sem ‘saltos quânticos’) e determinista (sem elementos probabilísticos). C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

80 Propriedades da equação de Schroedinger
Linearidade: t  0 t = 0 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

81 Propriedades da equação de Schroedinger
Conserva a norma do vetor de estado: tamanho não muda Conserva o ortogonalidade entre vetores: dois vetores perpendiculares continuam perpendiculares C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

82 Demonstração da linearidade
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

83 Demonstração da conservação da norma
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

84 Demonstração da conservação da ortogonalidade
|(0) e |(0) ortogonais |(t) e |(t) ortogonais C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

85 Propriedades da equação de Schroedinger
Determinismo Continuidade Linearidade Conservação da norma Conservação da ortogonalidade “evolução unitária” C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

86 Estados estacionários
Estado de energia bem definida En: mesma “direção” que |En |(t) e |(0) representam o mesmo estado físico. Estados de energia bem definida são “estacionários”. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

87 Conservação da energia
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

88 Eq. de Schroedinger x Processos de medida
Equação de Schroedinger: contínua determinista válida enquanto não se faz uma medida Redução do vetor de estado: descontínua probabilística ocorre durante a medida C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

89 Eq. de Schroedinger x Processos de medida
Dois tipos de evolução temporal? Equação de Schroedinger: interação do sistema quântico com outros sistemas quânticos. A = a1 e A = a2 Redução do vetor de estado: interação do sistema quântico com um aparato clássico, o aparelho de medida (o “observador”). A = a1 ou A = a2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

90 O “problema da medida” |  |    
Por que o aparelho de medida não é regido pela eq. de Schroedinger? a2 a1 Descrição quântica do aparelho de medida: |  |  aparelho de medida: equação de Schroedinger: o ponteiro aponta em duas direções ao mesmo tempo ! C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

91 O “problema da medida” Porque as superposições quânticas não são encontradas no mundo macroscópico? Jamais se observou um ponteiro macroscópico apontando em duas direções ao mesmo tempo. Um gato não pode estar simultaneamente vivo e morto. Como conciliar o espaço quântico de infinitos estados com a observação de apenas alguns poucos estados macroscópicos? Uma descrição do processo de medida baseada na equação de Schroedinger deve dar respostas a essas questões. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

92 Física quântica x física clássica
Por medida, na mecânica quântica, nós entendemos qualquer processo de interação entre objetos clássicos e quânticos… L. Landau & E. Lifshitz, Quantum Mechanics … os instrumentos de medida, para funcionarem como tal, não podem ser propriamente incluídos no domínio de aplicação da mecânica quântica. N. Bohr, carta a Schroedinger, 26 de outubro de 1935 …o ‘aparato’ não deveria ser separado do resto do mundo em uma caixa preta, como se não fosse feito de átomos e não fosse governado pela mecânica quântica. J. Bell, Against measurement C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

93 Física quântica x física clássica
…a mecânica quântica ocupa um lugar muito incomum entre as teorias físicas: ela contém a mecânica clássica como um caso limite, mas ao mesmo tempo requer esse caso limite para sua própria formulação... - L. Landau & E. Lifshitz, Quantum Mechanics C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

94 Os gatos de Schroedinger
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

95 Sistemas de N Estados Você está em todo lugar
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

96 Três valores possíveis para a grandeza A:
Sistemas de 3 estados Três valores possíveis para a grandeza A: a3 a1 a2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

97 ... ... Sistemas de N estados N valores possíveis para a grandeza A:
(impossível desenhar N eixos perpendiculares) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

98 Sistemas de infinitos estados
N pode ser infinito: N pode ser infinito, e a ter valores contínuos: densidade de probabilidade: probabilidade: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

99 Sistemas de infinitos estados
Exemplo: a = x = posição de uma partícula função de onda: (x) densidade de probabilidade: probabilidade: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

100 Sistemas de infinitos estados
A grandeza a pode ter valores discretos e contínuos: Exemplo: a = E = energia de uma partícula C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

101 Aplicações a sistemas simples
Instituto de Física Quântica Você está aqui e aqui C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

102 Interferômetro de Mach-Zehnder
Interferência de uma partícula Descrição quântica do interferômetro Interferência e indistinguibilidade C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

103 O interferômetro de Mach-Zehnder
interferência construtiva 0% 100% D1 D2 “ondas” interferência destrutiva C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

104 O interferômetro de Mach-Zehnder
50% D2 25% D1 25% D1 e D2 nunca disparam em coincidência “partículas” C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

105 Descrição quântica do interferômetro
(caminho 1) (caminho 2) C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

106 Espaço de estados probabilidades:
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

107 probabilidade de reflexão = probabilidade de transmissão = 1/2
Semiespelho 1 2 evolução unitária probabilidade de reflexão = probabilidade de transmissão = 1/2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

108 sinal negativo: evolução unitária conserva a ortogonalidade
Semiespelho sinal negativo: evolução unitária conserva a ortogonalidade C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

109 Interferômetro D1 D2 1 2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

110 Primeiro semiespelho:
Interferômetro Estado inicial: Primeiro semiespelho: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

111 Interferômetro Segundo semiespelho: ou seja, o estado final é
interferência destrutiva interferência construtiva P1 = 100% P2 = 0% C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

112 O que interfere? (1-1-1) (1-2-1) (1-1-2) (1-2-2) 2 2 1 1
(1-1-1) (1-2-1) (1-1-2) (1-2-2) 1 2 1 2 amplitudes de probabilidade associadas a caminhos alternativos indistinguíveis C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

113 Caminho bloqueado 1 2 D2 D1 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

114 Primeiro semiespelho:
Caminho bloqueado Estado inicial: Primeiro semiespelho: Bloqueio: fóton bloqueado C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

115 não há caminhos alternativos, logo não há interferência
Caminho bloqueado Segundo semiespelho: ou seja, o estado final é P1 = 25% P2 = 25% P = 50% não há caminhos alternativos, logo não há interferência C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

116 Por que não há interferência?
(1-1-1) (1-2-) (1-1-2) 1 1 2 1 2 não há caminhos alternativos para cada um dos estados finais  não há interferência C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

117 Caminhos alternativos distinguíveis
mola C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

118 Caminhos alternativos distinguíveis
1, 2: caminho do fóton R: espelho em repouso M: espelho em movimento Estado inicial: Primeiro semiespelho: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

119 Caminhos alternativos distinguíveis
Segundo semiespelho: ou seja, o estado final é P1 = P(1, R) + P(1, M) = 50% P2 = P(2, R) + P(2, M) = 50% soma de probabilidades, não de amplitudes C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

120 Apagando a informação sobre o caminho
mola C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

121 Apagando a informação sobre o caminho
Segundo semiespelho: ou seja, o estado final é dois caminhos para o mesmo estado final  interferência C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

122 O palito de fósforo quântico
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

123 O palito de fósforo quântico
fósforo “bom” fóton fósforo “ruim” fóton C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

124 O palito de fósforo quântico
palitos bons e ruins misturados Problema: como encher uma caixa de fósforos apenas com palitos bons? C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

125 Teste clássico palito bom queimado palito ruim
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

126 Teste quântico D1 D2 C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

127 palito ruim  D1 dispara sempre
transparente palito ruim  D1 dispara sempre C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

128 Palito bom palito bom  D2 dispara 25% das vezes,
50% palito bom  D2 dispara 25% das vezes, e o fósforo permanece intacto C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

129 Teste quântico D2  fósforo bom intacto
D1  fósforo bom intacto ou fósforo ruim Fósforo acende  fósforo bom queimado Dos fósforos bons: 25% estão identificados e intactos 50% foram queimados 25% em dúvida Retestando os casos duvidosos é possível identificar 1/3 dos fósforos bons. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

130 Mais aplicações a sistemas simples
O problema de Deutsch Molécula de H2+ Molécula de benzeno Oscilação de neutrinos Polarização do fóton Spin ½ Informação quântica Paradoxo de Hardy; teorema de Bell C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

131 Como chegar aos operadores, autovalores e autovetores
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

132 Conexão com os operadores
Produto escalar: | Projetores: | | Operador associado à grandeza A: C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

133 Conexão com os operadores
Autovalores e autovetores de A: É mais fácil encontrar (postular) o operador A do que os vetores |an e valores an. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

134 Comentários finais É possível apresentar alguns dos princípios básicos da mecânica quântica utilizando apenas matemática acessível a professores (e alunos?) do ensino médio. Essa abordagem permite descrever apropriadamente a mecânica quântica de sistemas simples. Aspectos conceituais da mecânica quântica podem ser discutidos sem as dificuldades criadas por um formalismo matemático pouco familiar. “Experimento didático” em desenvolvimento. Críticas e sugestões são bem-vindas. C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

135 Funciona? C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015

136 Curtiu? C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015


Carregar ppt "Mecânica Quântica: uma abordagem (quase) conceitual"

Apresentações semelhantes


Anúncios Google