A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

- 1 - ISEL – Instituto Superior de Engenharia de Lisboa Gestão de congestionamentos usando o GAMS Jorge Alberto Mendes de Sousa Professor Coordenador Webpage:

Apresentações semelhantes


Apresentação em tema: "- 1 - ISEL – Instituto Superior de Engenharia de Lisboa Gestão de congestionamentos usando o GAMS Jorge Alberto Mendes de Sousa Professor Coordenador Webpage:"— Transcrição da apresentação:

1 - 1 - ISEL – Instituto Superior de Engenharia de Lisboa Gestão de congestionamentos usando o GAMS Jorge Alberto Mendes de Sousa Professor Coordenador Webpage: pwp.net.ipl.pt/deea.isel/jsousa MEN - Mercados de Energia Mestrado em Engenharia Electrotécnica

2 - 2 - Agenda ISEL – Instituto Superior de Engenharia de Lisboa 1.Enquadramento 2.Exemplo de aplicação 3.Programação em GAMS 4.Exercícios

3 - 3 - Enquadramento ISEL – Instituto Superior de Engenharia de Lisboa Mecanismos para a Gestão de Congestionamentos  O congestionamento é uma situação em que a capacidade de interligação entre duas ou mais redes não permite acomodar todo o fluxo de energia resultante das transacções pretendidas pelos agentes do mercado.  Esta falta de capacidade de interligação tanto pode ser devida à insuficiente capacidade das linhas de interligação, como a limitações ao nível interno de cada uma das redes nacionais.  Para resolver ou mitigar este problema existem diversas formas para a gestão de congestionamento, em ambiente de mercado, normalmente com o objectivo de alocar de forma eficiente a capacidade de interligação existente mantendo a segurança técnica do sistema.  No MIBEL o mecanismo existente para o horizonte diário é o market splitting (separação de mercados) do qual resultam preços diferenciados para a zona portuguesa e para a zona espanhola nas horas de congestionamento.

4 - 4 - Exemplo de aplicação Licitações e equilíbrio no mercado diário ISEL – Instituto Superior de Engenharia de Lisboa Considere as seguintes licitações de compra e de venda para uma dada hora efectuadas num mercado de energia eléctrica que integra dois sistemas cuja capacidade de interligação é alocada através do mecanismo de market splitting: C O M P R A V E N D A Energia Preco Mercado Energia Preco Mercado MWh €/MWh MWh €/MWh c v c v c v c v c v v v Indique o preço de cada mercado para diversos valores de capacidade de interligação, em particular para 250 MW.

5 - 5 - ISEL – Instituto Superior de Engenharia de Lisboa * MODELO DE MERCADO para casamento de licitacoes de compra e venda * considerando a existencia de 2 mercados onde o mecanismo de gestao * de congestionamento e o MARKET SPLITTING (separacao de mercados) SETS c indice das licitacoes de compra /c1*c5/ v indice das licitacoes de venda /v1*v7/ ; SCALARS CapInterl capacidade de interligacao entre o pais 1 e 2 /250/ Interl transito de energia na interligacao Fluxo12 transito de energia do mercado 1 para o mercado 2 Fluxo21 transito de energia do mercado 2 para o mercado 1 P1max valor maximo de preco das licitacoes de compra do mercado 1 P2max valor maximo de preco das licitacoes de compra do mercado 2 ; Programação em GAMS (1/7)

6 - 6 - ISEL – Instituto Superior de Engenharia de Lisboa TABLE COMPRA(c,*) licitacoes de compra ENR PRC PAIS * Energia Preco Pais * (MWh) (€/MWh) (1,2) c c c c c ; TABLE VENDA(v,*) licitacoes de compra ENR PRC PAIS * Energia Preco Pais * (MWh) (€/MWh) (1,2) v v v v v v v ; Programação em GAMS (2/7)

7 - 7 - ISEL – Instituto Superior de Engenharia de Lisboa VARIABLES W funcao objectivo - bem estar social W1 funcao objectivo - bem estar social do mercado 1 W2 funcao objectivo - bem estar social do mercado 2 Ec(c) potencia casada de cada licitacao de compra Ev(v) potencia casada de cada licitacao de venda ; POSITIVE VARIABLES Ec(c), Ev(v); EQUATIONS BESOCIAL equacao funcao objectivo - bem estar social BESOCIAL_1 equacao funcao objectivo - bem estar social do mercado 1 BESOCIAL_2 equacao funcao objectivo - bem estar social do mercado 2 EMAXCMP(c) equacao de energia maxima das lcitacoes de compra EMAXVND(v) equacao de energia maxima das licitacoes de venda BALANCO equacao de balanco entre a energia casada de compra e venda BALANCO_1 equacao de balanco entre a energia casada de compra e venda do mercado 1 BALANCO_2 equacao de balanco entre a energia casada de compra e venda do mercado 2 ; Programação em GAMS (3/7)

8 - 8 - ISEL – Instituto Superior de Engenharia de Lisboa BESOCIAL.. W =e= SUM(c$(COMPRA(c,'PAIS')>0), COMPRA(c,'PRC')*Ec(c)) - SUM(v$( VENDA(v,'PAIS')>0), VENDA(v,'PRC')*Ev(v)) ; EMAXCMP(c).. Ec(c) =l= COMPRA(c,'ENR') ; EMAXVND(v).. Ev(v) =l= VENDA(v,'ENR') ; BALANCO.. SUM(c$(COMPRA(c,'PAIS')>0), Ec(c)) =e= SUM(v$( VENDA(v,'PAIS')>0), Ev(v)) ; BESOCIAL_1.. W1 =e= SUM(c$(COMPRA(c,'PAIS')=1), COMPRA(c,'PRC')*Ec(c)) - SUM(v$( VENDA(v,'PAIS')=1), VENDA(v,'PRC')*Ev(v)) + Interl$(Fluxo12>0)*P1max ; BESOCIAL_2.. W2 =e= SUM(c$(COMPRA(c,'PAIS')=2), COMPRA(c,'PRC')*Ec(c)) - SUM(v$( VENDA(v,'PAIS')=2), VENDA(v,'PRC')*Ev(v)) + Interl$(Fluxo21>0)*P2max ; BALANCO_1.. SUM(c$(COMPRA(c,'PAIS')=1), Ec(c)) + Interl$(Fluxo12>0) =e= SUM(v$( VENDA(v,'PAIS')=1), Ev(v)) + Interl$(Fluxo21>0) ; BALANCO_2.. SUM(c$(COMPRA(c,'PAIS')=2), Ec(c)) + Interl$(Fluxo21>0) =e= SUM(v$( VENDA(v,'PAIS')=2), Ev(v)) + Interl$(Fluxo12>0) ; Programação em GAMS (4/7)

9 - 9 - ISEL – Instituto Superior de Engenharia de Lisboa MODEL MIntegrado /BESOCIAL, EMAXCMP, EMAXVND, BALANCO/; MODEL Mercado1 /BESOCIAL_1, EMAXCMP, EMAXVND, BALANCO_1/; MODEL Mercado2 /BESOCIAL_2, EMAXCMP, EMAXVND, BALANCO_2/; SCALARS Preco preco de mercado Energia energia casada Preco1 preco do mercado 1 Evenda1 energia de venda casada do mercado 1 Ecompra1 energia de compra casada do mercado 1 Preco2 preco do mercado 2 Evenda2 energia de venda casada do mercado 2 Ecompra2 energia de compra casada do mercado 2 RendaCong renda de congestionamento BES bem estar social ; SOLVE MIntegrado USING LP MAXIMIZING W; DISPLAY Ev.l, Ec.l; Programação em GAMS (5/7)

10 ISEL – Instituto Superior de Engenharia de Lisboa Preco = SMAX(v,sign(Ev.l(v)) * VENDA(v,'PRC')); Energia = SUM(v, Ev.l(v)); P1max = SMAX(c$(COMPRA(c,'PAIS')=1), COMPRA(c,'PRC')); P2max = SMAX(c$(COMPRA(c,'PAIS')=2), COMPRA(c,'PRC')); * Transito de energia do mercado 1 para o 2 igual a energia casada de venda * menos a energia casada de compra no mercado 1 e vice versa para o mercado 2 Fluxo12 = SUM(v$( VENDA(v,'PAIS')=1), Ev.l(v)) - SUM(c$(COMPRA(c,'PAIS')=1), Ec.l(c)); Fluxo21 = SUM(v$( VENDA(v,'PAIS')=2), Ev.l(v)) - SUM(c$(COMPRA(c,'PAIS')=2), Ec.l(c)); * MARKET SPLITTING: Resolve-se agora a situacao de separacao de mercados Interl = min(abs(Fluxo12),CapInterl); Programação em GAMS (6/7)

11 ISEL – Instituto Superior de Engenharia de Lisboa SOLVE Mercado1 USING LP MAXIMIZING W1; Preco1 = SMAX(v$( VENDA(v,'PAIS')=1),sign(Ev.l(v)) * VENDA(v,'PRC')); Evenda1 = SUM(v$( VENDA(v,'PAIS')=1), Ev.l(v)); Ecompra1 = SUM(c$(COMPRA(c,'PAIS')=1), Ec.l(c)); DISPLAY Ev.l, Ec.l; SOLVE Mercado2 USING LP MAXIMIZING W2; Preco2 = SMAX(v$( VENDA(v,'PAIS')=2),sign(Ev.l(v)) * VENDA(v,'PRC')); Evenda2 = SUM(v$( VENDA(v,'PAIS')=2), Ev.l(v)); Ecompra2 = SUM(c$(COMPRA(c,'PAIS')=2), Ec.l(c)); DISPLAY Ev.l, Ec.l; Preco1 = max(Preco1, Preco2$(Fluxo21 >0)); Preco2 = max(Preco2, Preco1$(Fluxo12 >0)); RendaCong = abs(Preco1 - Preco2) * Interl; BES = W1.l + W2.l; DISPLAY W1.l, Preco1, Evenda1, Ecompra1; DISPLAY W2.l, Preco2, Evenda2, Ecompra2; DISPLAY BES, Interl, RendaCong; DISPLAY CapInterl, Fluxo12, Fluxo21; Programação em GAMS (7/7)

12 ISEL – Instituto Superior de Engenharia de Lisboa 1. Para o exemplo apresentado, com uma capacidade de interligação de 250 MW, determine: a) O preço de cada mercado b) A energia vendida e comprada em cada mercado c) O bem-estar social de cada mercado e do conjunto dos dois mercados d) A renda de congestionamento 2. Responda à alínea anterior considerando as seguintes capacidades de interligação: 0 MW (mercados em autarcia), 400 MW, 600 MW (mercados totalmente integrados). 3. Comente a evolução dos resultados obtidos para valores crescentes da capacidade de interligação. Exercícios de aplicação

13 ISEL – Instituto Superior de Engenharia de Lisboa Gestão de congestionamentos usando o GAMS Jorge Alberto Mendes de Sousa Professor Coordenador Webpage: pwp.net.ipl.pt/deea.isel/jsousa MEN - Mercados de Energia Mestrado em Engenharia Electrotécnica


Carregar ppt "- 1 - ISEL – Instituto Superior de Engenharia de Lisboa Gestão de congestionamentos usando o GAMS Jorge Alberto Mendes de Sousa Professor Coordenador Webpage:"

Apresentações semelhantes


Anúncios Google